
Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Convolutional Neural Networks on Graphs with Fast Localized
Spectral Filtering

by M. Defferrard, X. Bresson, P. Vandergheynst, 2016
Paper presentation

Hubert Leterme

July 8th, 2020

1 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Table of Contents

1 Introduction

2 Background on CNNs

3 Convolution layers on graphs

4 Pooling layers on graphs

5 Numerical experiments

6 Conclusion and perspectives

7 References

2 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Introduction

Convolutional neural networks (CNNs), introduced in 1989 by Yann
LeCun [1], are able to learn local stationary structures which are
composed into multi-scale patterns. They led to breakthroughs in
image, video and sound recognition tasks.

Defferard and colleagues [2] introduced a generalization of CNNs to
graphs, which encode complex data structures lying on irregular or
non-euclidean domains.

Main challenges:
– Construct a convolution operator on irregular grids;
– Design strictly localized filters, as in standard CNNs;
– Compute forward- and backward-propagation with a linear complexity

w.r.t. the filter support’s size and the number of edges;
– Design an efficient pooling operator (which yields smaller graphs by

grouping vertices together);
– Obtain high experimental performance on both standard image and more

complex data recognition tasks.

3 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Introduction

Convolutional neural networks (CNNs), introduced in 1989 by Yann
LeCun [1], are able to learn local stationary structures which are
composed into multi-scale patterns. They led to breakthroughs in
image, video and sound recognition tasks.

Defferard and colleagues [2] introduced a generalization of CNNs to
graphs, which encode complex data structures lying on irregular or
non-euclidean domains.

Main challenges:
– Construct a convolution operator on irregular grids;
– Design strictly localized filters, as in standard CNNs;
– Compute forward- and backward-propagation with a linear complexity

w.r.t. the filter support’s size and the number of edges;
– Design an efficient pooling operator (which yields smaller graphs by

grouping vertices together);
– Obtain high experimental performance on both standard image and more

complex data recognition tasks.

3 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Section 2

Background on CNNs

4 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Description of a convolutional layer

Forward-propagation:

Xs
Conv(W)−−−−−→ Ys

ReLu−−−→ As
Pool−−→ Zs

with:

Xs ∈ RC×M×M , Ys ,As ∈ RD×M×M and Zs ∈ RD×N×N (feature maps for
the s-th training sample);

W ∈ RD×C×µ×µ (convolution kernels – trainable parameters);

C ,D > 0 (number of input and output feature maps);

M,N > 0 such that N < M (sizes of the input and output feature maps);

µ� M (size of the convolution kernels).

Conv: convolutional layer (see slide 7);

ReLu: rectified linear unit (non-linear pointwise operation);

Pool: pooling operator (e.g. max pooling).

5 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a convolutional layer

Computation of the d-th output feature map, for d ∈ [0 . .D − 1]:

Ys,d = bd +
C−1∑
c=0

(Wd,c ? Xs,c)

where ? denotes the cross-correlation operator (slid sum-product).

Figure: c-th input feature map Xs,c ∈ RM×M , for a given c ∈ [0 . .C − 1]

6 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a convolutional layer

Computation of the d-th output feature map, for d ∈ [0 . .D − 1]:

Ys,d = bd +
C−1∑
c=0

(Wd,c ? Xs,c)

where ? denotes the cross-correlation operator (slid sum-product).

Figure: c-th input feature map, extended with zeros (padding)

6 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a convolutional layer

Computation of the d-th output feature map, for d ∈ [0 . .D − 1]:

Ys,d = bd +
C−1∑
c=0

(Wd,c ? Xs,c)

where ? denotes the cross-correlation operator (slid sum-product).

Figure: Cross-correlation mapping the c-th input Xs,c (left, in blue) to the d-th
output, using the kernel Wd,c ∈ Rµ×µ (left, in orange). Right: (Wd,c ? Xs,c).

7 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a convolutional layer

Computation of the d-th output feature map, for d ∈ [0 . .D − 1]:

Ys,d = bd +
C−1∑
c=0

(Wd,c ? Xs,c)

where ? denotes the cross-correlation operator (slid sum-product).

Figure: Cross-correlation mapping the c-th input Xs,c (left, in blue) to the d-th
output, using the kernel Wd,c ∈ Rµ×µ (left, in orange). Right: (Wd,c ? Xs,c).

7 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a convolutional layer

Computation of the d-th output feature map, for d ∈ [0 . .D − 1]:

Ys,d = bd +
C−1∑
c=0

(Wd,c ? Xs,c)

where ? denotes the cross-correlation operator (slid sum-product).

Figure: Cross-correlation mapping the c-th input Xs,c (left, in blue) to the d-th
output, using the kernel Wd,c ∈ Rµ×µ (left, in orange). Right: (Wd,c ? Xs,c).

7 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a convolutional layer

Computation of the d-th output feature map, for d ∈ [0 . .D − 1]:

Ys,d = bd +
C−1∑
c=0

(Wd,c ? Xs,c)

where ? denotes the cross-correlation operator (slid sum-product).

Figure: Cross-correlation mapping the c-th input Xs,c (left, in blue) to the d-th
output, using the kernel Wd,c ∈ Rµ×µ (left, in orange). Right: (Wd,c ? Xs,c).

7 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a convolutional layer

Computation of the d-th output feature map, for d ∈ [0 . .D − 1]:

Ys,d = bd +
C−1∑
c=0

(Wd,c ? Xs,c)

where ? denotes the cross-correlation operator (slid sum-product).

Figure: Cross-correlation mapping the c-th input Xs,c (left, in blue) to the d-th
output, using the kernel Wd,c ∈ Rµ×µ (left, in orange). Right: (Wd,c ? Xs,c).

7 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a convolutional layer

Computation of the d-th output feature map, for d ∈ [0 . .D − 1]:

Ys,d = bd +
C−1∑
c=0

(Wd,c ? Xs,c)

where ? denotes the cross-correlation operator (slid sum-product).

Figure: Cross-correlation mapping the c-th input Xs,c (left, in blue) to the d-th
output, using the kernel Wd,c ∈ Rµ×µ (left, in orange). Right: (Wd,c ? Xs,c).

7 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a convolutional layer

Computation of the d-th output feature map, for d ∈ [0 . .D − 1]:

Ys,d = bd +
C−1∑
c=0

(Wd,c ? Xs,c)

where ? denotes the cross-correlation operator (slid sum-product).

Figure: Cross-correlation mapping the c-th input Xs,c (left, in blue) to the d-th
output, using the kernel Wd,c ∈ Rµ×µ (left, in orange). Right: (Wd,c ? Xs,c).

7 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Convolution versus cross-correlation

Matrix convolution product:

(U ∗ V)[m, n] =
∑
i∈Z

∑
j∈Z

U[i , j] · V[m − i , n − j]

Cross-correlation:

(U ? V)[m, n] =
∑
i∈Z

∑
j∈Z

U[i , j] · V[m + i , n + j]

Proposition 2.1

U ? V = U ∗ V

where U[m, n] = U[−m,−n].

8 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Learning convolution kernels
Description of a training step

Let’s assume the following values have already been computed:

E : loss computed over a minibatch of S samples;{
∇(Ys,d)E

∣∣∣s ∈ [0 . . S − 1] , d ∈ [0 . .D − 1]
}

: gradients w.r.t. the

outputs;
Then, backpropagates the gradient in O(SCD · µ2N2):

∇(Wd,c)E =
S∑

s=1

(
∇(Ys,d)E

)
? Xs,c

∇(Xs,c)E =
D∑

d=1

(
∇(Ys,d)E

)
∗Wd,c

Finally, update the weights using stochastic gradient descent:

Wd,c ←
(

Wd,c − η · ∇(Wd,c)E
)

9 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Learning convolution kernels
Description of a training step

Let’s assume the following values have already been computed:

E : loss computed over a minibatch of S samples;{
∇(Ys,d)E

∣∣∣s ∈ [0 . . S − 1] , d ∈ [0 . .D − 1]
}

: gradients w.r.t. the

outputs;
Then, backpropagates the gradient in O(SCD · µ2N2):

∇(Wd,c)E =
S∑

s=1

(
∇(Ys,d)E

)
? Xs,c

∇(Xs,c)E =
D∑

d=1

(
∇(Ys,d)E

)
∗Wd,c

Finally, update the weights using stochastic gradient descent:

Wd,c ←
(

Wd,c − η · ∇(Wd,c)E
)

9 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a pooling layer
Example of max pooling with size 2 × 2

For any sample s and any output d :

Zs,d [m, n] = max
i,j∈{0,1}

(
Ys,d [2m + i , 2n + j]

)
with Ys,d ∈ RN×N and Zs,d ∈ R(N/2)×(N/2).

10 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a pooling layer
Example of max pooling with size 2 × 2

For any sample s and any output d :

Zs,d [m, n] = max
i,j∈{0,1}

(
Ys,d [2m + i , 2n + j]

)
with Ys,d ∈ RN×N and Zs,d ∈ R(N/2)×(N/2).

10 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a pooling layer
Example of max pooling with size 2 × 2

For any sample s and any output d :

Zs,d [m, n] = max
i,j∈{0,1}

(
Ys,d [2m + i , 2n + j]

)
with Ys,d ∈ RN×N and Zs,d ∈ R(N/2)×(N/2).

10 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a pooling layer
Example of max pooling with size 2 × 2

For any sample s and any output d :

Zs,d [m, n] = max
i,j∈{0,1}

(
Ys,d [2m + i , 2n + j]

)
with Ys,d ∈ RN×N and Zs,d ∈ R(N/2)×(N/2).

10 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a pooling layer
Example of max pooling with size 2 × 2

For any sample s and any output d :

Zs,d [m, n] = max
i,j∈{0,1}

(
Ys,d [2m + i , 2n + j]

)
with Ys,d ∈ RN×N and Zs,d ∈ R(N/2)×(N/2).

10 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a pooling layer
Example of max pooling with size 2 × 2

For any sample s and any output d :

Zs,d [m, n] = max
i,j∈{0,1}

(
Ys,d [2m + i , 2n + j]

)
with Ys,d ∈ RN×N and Zs,d ∈ R(N/2)×(N/2).

10 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Illustration of a pooling layer
Example of max pooling with size 2 × 2

For any sample s and any output d :

Zs,d [m, n] = max
i,j∈{0,1}

(
Ys,d [2m + i , 2n + j]

)
with Ys,d ∈ RN×N and Zs,d ∈ R(N/2)×(N/2).

10 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Section 3

Convolution layers on graphs

11 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Notations

Graph G = (V, E ,A), with:
– |V| = N;
– A ∈ RN×N such that Aij 6= 0 =⇒ (i , j) ∈ E.

L ∈ RN×N : positive semidefinite reference matrix for G;

U,Λ ∈ RN×N , with:
– U = [u0, . . . , uN−1]: eigenvectors of L (graph Fourier modes);
– Λ = diag(λ0, . . . , λN−1): eigenvalues of L (graph frequencies);

such that L = UΛU>;

Input signal x ∈ RN , defined on the nodes of G;

x̂: graph Fourier transform of x, such that x̂ = U>x.

12 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

From classical to graph convolutions

Forward-propagation for any sample s and any output d :

Classical CNN:

Ys,d =
C−1∑
c=0

(Wd,c ? Xs,c)

=
C−1∑
c=0

(
Wd,c ∗ Xs,c

)
according to proposition 2.1.

Graph CNN:

ys,d =
C−1∑
c=0

(θd,c ∗(G) xs,c)

where ∗(G) has to be defined.

13 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

From classical to graph convolutions

Issue with spatial convolution: no unique definition of translation on graphs.

14 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

From classical to graph convolutions

Issue with spatial convolution: no unique definition of translation on graphs.

14 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

From classical to graph convolutions

Issue with spatial convolution: no unique definition of translation on graphs.

14 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

From classical to graph convolutions

Issue with spatial convolution: no unique definition of translation on graphs.

14 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

From classical to graph convolutions

Issue with spatial convolution: no unique definition of translation on graphs.

14 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph convolution via Fourier transform

Instead, use convolution properties in the Fourier domain:

G(d)(xs) = ys,d =
C−1∑
c=0

(θd,c ∗(G) xs,c)

=
C−1∑
c=0

U · g (d,c)(Λ) ·

x̂s,c︷ ︸︸ ︷
U>xs,c︸ ︷︷ ︸

filtering︸ ︷︷ ︸
inverse Fourier transform︸ ︷︷ ︸
sum over all inputs

with g (d,c) : R+ → R and g (d,c)(Λ) = diag
(
g (d,c)(λ0), . . . , g (d,c)(λN−1)

)
.

=⇒ For any input c and output d , g (d,c) only needs to be defined on the
graph frequencies λ0, . . . , λN−1, giving a weight to the corresponding
eigenspaces.

15 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Parametrization of graph filters
First approach: non-parametric filters

Let θd,c ∈ RN such that g (d,c)(λn) = θd,c [n] for any n ∈ [0 . .N − 1].

7 Not localized in space;

7 N trainable parameters (� N for standard CNNs);

7 Filtering operation: O(N2) (linear complexity for standard CNNs).

16 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Parametrization of graph filters
Polynomial parametrization – naive approach

Let θd,c ∈ RK (K � N) such that for any n ∈ [0 . .N − 1]:

g (d,c)(λn) =
K−1∑
k=0

θd,c [k] · λk
n

3 K -localized filters: for any i , j ∈ [0 . .N − 1], ys,d [j] is influenced by
xs,c [i] only if dG(i , j) ≤ (K − 1), where dG denotes the minimum number
of edges connecting vertices i and j ;

3 K trainable parameters, which is equal to the filter spatial extension
(similarly to standard 1D CNNs);

7 Filtering operation: O(N2) (linear complexity for standard CNNs).

17 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Parametrization of graph filters
Parametrization in the basis of Chebyshev polynomials

Let θd,c ∈ RK (K � N) such that for any n ∈ [0 . .N − 1]:

g (d,c)(λn) =
K−1∑
k=0

θd,c [k] · Tk(λ̃n)

with λ̃ = 2λ/λmax − 1 and Tk ∈ Pk(R) (Chebyshev polynomials) such that:
T0(u) = 1

T1(u) = u

Tk(u) = 2uTk−1(u)− Tk−2(u) for any k ≥ 2

3 K -localized filters: for any i , j ∈ [0 . .N − 1], ys,d [j] is influenced by
xs,c [i] only if dG(i , j) ≤ (K − 1), where dG denotes the minimum number
of edges connecting vertices i and j ;

3 K trainable parameters, which is equal to the filter spatial extension
(similarly to standard 1D CNNs);

3 Fast filtering operation with complexity O(K |E|)� O(N2) (takes
advantage of the sparsity of L).

18 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Learning graph convolution filters
Forward-propagation

Forward-propagation in O(SCD · K |E|):

ys,d =
C−1∑
c=0

(θd,c ∗(G) xs,c)

=
C−1∑
c=0

(TL(xs,c) · θd,c)

with:

θd,c ∈ RK vector of Chebyshev coefficients;

TL : RN → RN×K , computed in O(K |E|) with K recursive computations.

19 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Learning graph convolution filters
Gradient backpropagation

Gradient backpropagation in O(SCD · K |E|) (assuming |E| ∼ N):

∇(θd,c)E =
S−1∑
s=0

[
TL(xs,c)> · ∇(ys,d)E

]

∇(xs,c)E =
D−1∑
d=0

[
TL

(
∇(ys,d)E

)
· θd,c

]
where the loss E is computed over a minibatch of S samples.

Stochastic gradient descent: θd,c ←
(
θd,c − η · ∇(θd,c)E

)
20 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Learning graph convolution filters
Gradient backpropagation

Gradient backpropagation in O(SCD · K |E|) (assuming |E| ∼ N):

∇(θd,c)E =
S−1∑
s=0

[
TL(xs,c)> · ∇(ys,d)E

]

∇(xs,c)E =
D−1∑
d=0

[
TL

(
∇(ys,d)E

)
· θd,c

]
where the loss E is computed over a minibatch of S samples.

Stochastic gradient descent: θd,c ←
(
θd,c − η · ∇(θd,c)E

)
20 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Section 4

Pooling layers on graphs

21 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

From classical to graph pooling layers

Forward-propagation for any sample s and any output d :

Classical CNN:

Zs,d [n] = max
i∈{0,1}2

(
Ys,d [2n + i]

) Graph CNN:

zs,d [n] = max
m∈πn

(
ys,d [m]

)
where πn ⊂ [0 . .N − 1] denotes the set
of neighboring nodes that are reduced
into one in the output graph.

Goal: find a graph structure G′ = (V ′, E ′,W′) with |V ′| = N ′ = dN/2e and a
grouping {πn}n∈[0..N′−1], such that local geometric structures are preserved.

22 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.

23 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Fast pooling algorithm

Idea: rearrange vertices such that the pooling operation is computed over 2
consecutive nodes:

∀n ∈
[
0 . .N ′ − 1

]
, π(n) = {2n, 2n + 1}

Then:
zs,d [n] = max

i∈{0,1}2

(
ys,d [2n + i]

)

Figure: From [2]

24 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Fast pooling algorithm

Idea: rearrange vertices such that the pooling operation is computed over 2
consecutive nodes:

∀n ∈
[
0 . .N ′ − 1

]
, π(n) = {2n, 2n + 1}

Then:
zs,d [n] = max

i∈{0,1}2

(
ys,d [2n + i]

)

Figure: From [2]

24 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Section 5

Numerical experiments

25 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Applying graph CNN on image classification

Sanity check for the model: it should at least perform well on standard
image classification tasks.

8-NN1 similarity graph of the 2D grid:

with weights: A[i , j] = exp
(
− ‖z j−z i‖2

2

σ2

)
, where z i ∈ R2 is the coordinate

of pixel i on the grid.

Figure: Classical vs graph
CNN Figure: Different models of graph CNNs

1nearest neighbors
26 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Text categorization
Data structure

Text categorization problem on the 20NEWS dataset [4].

Using a bag-of-words model [5]: each document (input data) is
represented as a vector x ∈ RN with N = 10, 000 (most common words
in the corpus). x[i] is the number of occurrences of word i in the
document.

Word2vec embedding [5]: each word i is semantically represented as a
vector z i ∈ Rd using (e.g. d = 640).

Data structure: 16-NN graph G = (V, E ,A), with:
– |V| = 10, 000;
– |E| = 132, 834 edges (connections between the nearest neighbors, using

the Euclidean distance induced by the word2vec embedding);

– weights: A[i , j] = exp

(
− ‖z j−z i‖2

2

σ2

)
.

Model trained for 20 epochs using Adam optimizer [6] and initial
learning rate η = 0.001.

27 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Text categorization
Data structure

Text categorization problem on the 20NEWS dataset [4].

Using a bag-of-words model [5]: each document (input data) is
represented as a vector x ∈ RN with N = 10, 000 (most common words
in the corpus). x[i] is the number of occurrences of word i in the
document.

Word2vec embedding [5]: each word i is semantically represented as a
vector z i ∈ Rd using (e.g. d = 640).

Data structure: 16-NN graph G = (V, E ,A), with:
– |V| = 10, 000;
– |E| = 132, 834 edges (connections between the nearest neighbors, using

the Euclidean distance induced by the word2vec embedding);

– weights: A[i , j] = exp

(
− ‖z j−z i‖2

2

σ2

)
.

Model trained for 20 epochs using Adam optimizer [6] and initial
learning rate η = 0.001.

27 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Text categorization
Results

Figure: Proposed model (GC32) is beaten
by multinomial Bayes classifier but
outperforms fully-connected newtorks with
much less parameters.

Figure: Linear complexity of the proposed
model w.r.t. the data dimensionality N (vs
O(N2) for non-parametric CNNs or graph
CNNs introduced in [7]).

Figure: Different models of graph CNNs

28 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Influence of graph structure on prediction accuracy

Figure: MNIST

Figure: 20NEWS

“bag-of-words”: naive embedding;

“learned”: embedding learned with word2vec [5];

“approximate”: approximate nearest-neighbors algorithm used for larger
datasets.

=⇒ The quality of the results strongly depend on the graph structure. It
must be designed in order to fulfill assumptions of locality and
stationarity, as in classical CNNs.

29 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Conclusion and perspectives

Defferrard and colleagues [2] proposed a model of graph CNN able to extract
local and stationary features from the data. Improvements with respect to
previous graph CNNs [7] are:

strictly localized convolution filters;

computational efficiency which is comparable to classical CNNs;

higher test accuracy.

Future work:

Explore applications to fields where the data naturally lies on graphs,
with explicit information about its structure;

Learn optimal graph structure in parallel to CNN parameters (instead of
using a pre-defined one).

30 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

References I

Yann LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel.

Backpropagation Applied to Handwritten Zip Code Recognition.

Neural Computation, 1989.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst.

Convolutional Neural Networks on Graphs with Fast Localized Spectral
Filtering.

In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, pages 3844–3852.
Curran Associates, Inc., 2016.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2323, 1998.

Thorsten Joachims.

A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text
Categorization.

Technical report, Carnegie-mellon univ pittsburgh pa dept of computer science,
1996.

31 / 32

Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

References II

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.

Efficient Estimation of Word Representations in Vector Space.

arXiv:1301.3781 [cs], September 2013.

Diederik P. Kingma and Jimmy Ba.

Adam: A Method for Stochastic Optimization.

arXiv preprint arXiv:1412.6980, pages 1–15, 2014.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun.

Spectral Networks and Locally Connected Networks on Graphs.

arXiv:1312.6203 [cs], May 2014.

32 / 32

	Introduction
	Background on CNNs
	Convolution layers on graphs
	Pooling layers on graphs
	Numerical experiments
	Conclusion and perspectives
	References

