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Introduction

Convolutional neural networks (CNNs), introduced in 1989 by Yann
LeCun [1], are able to learn local stationary structures which are
composed into multi-scale patterns. They led to breakthroughs in
image, video and sound recognition tasks.

Defferard and colleagues [2] introduced a generalization of CNNs to
graphs, which encode complex data structures lying on irregular or
non-euclidean domains.

Main challenges:
– Construct a convolution operator on irregular grids;
– Design strictly localized filters, as in standard CNNs;
– Compute forward- and backward-propagation with a linear complexity

w.r.t. the filter support’s size and the number of edges;
– Design an efficient pooling operator (which yields smaller graphs by

grouping vertices together);
– Obtain high experimental performance on both standard image and more

complex data recognition tasks.
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Description of a convolutional layer

Forward-propagation:

Xs
Conv(W)−−−−−→ Ys

ReLu−−−→ As
Pool−−→ Zs

with:

Xs ∈ RC×M×M , Ys ,As ∈ RD×M×M and Zs ∈ RD×N×N (feature maps for
the s-th training sample);

W ∈ RD×C×µ×µ (convolution kernels – trainable parameters);

C ,D > 0 (number of input and output feature maps);

M,N > 0 such that N < M (sizes of the input and output feature maps);

µ� M (size of the convolution kernels).

Conv: convolutional layer (see slide 7);

ReLu: rectified linear unit (non-linear pointwise operation);

Pool: pooling operator (e.g. max pooling).
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Illustration of a convolutional layer

Computation of the d-th output feature map, for d ∈ [0 . .D − 1]:

Ys,d = bd +
C−1∑
c=0

(Wd,c ? Xs,c)

where ? denotes the cross-correlation operator (slid sum-product).

Figure: c-th input feature map Xs,c ∈ RM×M , for a given c ∈ [0 . .C − 1]
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Computation of the d-th output feature map, for d ∈ [0 . .D − 1]:

Ys,d = bd +
C−1∑
c=0

(Wd,c ? Xs,c)

where ? denotes the cross-correlation operator (slid sum-product).

Figure: c-th input feature map, extended with zeros (padding)
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Convolution versus cross-correlation

Matrix convolution product:

(U ∗ V)[m, n] =
∑
i∈Z

∑
j∈Z

U[i , j ] · V[m − i , n − j ]

Cross-correlation:

(U ? V)[m, n] =
∑
i∈Z

∑
j∈Z

U[i , j ] · V[m + i , n + j ]

Proposition 2.1

U ? V = U ∗ V

where U[m, n] = U[−m,−n].
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Learning convolution kernels
Description of a training step

Let’s assume the following values have already been computed:

E : loss computed over a minibatch of S samples;{
∇(Ys,d )E

∣∣∣s ∈ [0 . . S − 1] , d ∈ [0 . .D − 1]
}

: gradients w.r.t. the

outputs;
Then, backpropagates the gradient in O(SCD · µ2N2):

∇(Wd,c )E =
S∑

s=1

(
∇(Ys,d )E

)
? Xs,c

∇(Xs,c )E =
D∑

d=1

(
∇(Ys,d )E

)
∗Wd,c

Finally, update the weights using stochastic gradient descent:

Wd,c ←
(

Wd,c − η · ∇(Wd,c )E
)

9 / 32
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Illustration of a pooling layer
Example of max pooling with size 2 × 2

For any sample s and any output d :

Zs,d [m, n] = max
i,j∈{0,1}

(
Ys,d [2m + i , 2n + j ]

)
with Ys,d ∈ RN×N and Zs,d ∈ R(N/2)×(N/2).
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Section 3

Convolution layers on graphs
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Notations

Graph G = (V, E ,A), with:
– |V| = N;
– A ∈ RN×N such that Aij 6= 0 =⇒ (i , j) ∈ E.

L ∈ RN×N : positive semidefinite reference matrix for G;

U,Λ ∈ RN×N , with:
– U = [u0, . . . , uN−1]: eigenvectors of L (graph Fourier modes);
– Λ = diag(λ0, . . . , λN−1): eigenvalues of L (graph frequencies);

such that L = UΛU>;

Input signal x ∈ RN , defined on the nodes of G;

x̂: graph Fourier transform of x, such that x̂ = U>x.

12 / 32
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From classical to graph convolutions

Forward-propagation for any sample s and any output d :

Classical CNN:

Ys,d =
C−1∑
c=0

(Wd,c ? Xs,c)

=
C−1∑
c=0

(
Wd,c ∗ Xs,c

)
according to proposition 2.1.

Graph CNN:

ys,d =
C−1∑
c=0

(θd,c ∗(G) xs,c)

where ∗(G) has to be defined.
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From classical to graph convolutions

Issue with spatial convolution: no unique definition of translation on graphs.
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Graph convolution via Fourier transform

Instead, use convolution properties in the Fourier domain:

G(d)(xs) = ys,d =
C−1∑
c=0

(θd,c ∗(G) xs,c)

=
C−1∑
c=0

U · g (d,c)(Λ) ·

x̂s,c︷ ︸︸ ︷
U>xs,c︸ ︷︷ ︸

filtering︸ ︷︷ ︸
inverse Fourier transform︸ ︷︷ ︸
sum over all inputs

with g (d,c) : R+ → R and g (d,c)(Λ) = diag
(
g (d,c)(λ0), . . . , g (d,c)(λN−1)

)
.

=⇒ For any input c and output d , g (d,c) only needs to be defined on the
graph frequencies λ0, . . . , λN−1, giving a weight to the corresponding
eigenspaces.

15 / 32



Introduction

Background
on CNNs

Convolution
layers on
graphs

Pooling
layers on
graphs

Numerical
experiments

Conclusion
and
perspectives

References

Parametrization of graph filters
First approach: non-parametric filters

Let θd,c ∈ RN such that g (d,c)(λn) = θd,c [n] for any n ∈ [0 . .N − 1].

7 Not localized in space;

7 N trainable parameters (� N for standard CNNs);

7 Filtering operation: O(N2) (linear complexity for standard CNNs).
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Parametrization of graph filters
Polynomial parametrization – naive approach

Let θd,c ∈ RK (K � N) such that for any n ∈ [0 . .N − 1]:

g (d,c)(λn) =
K−1∑
k=0

θd,c [k] · λk
n

3 K -localized filters: for any i , j ∈ [0 . .N − 1], ys,d [j ] is influenced by
xs,c [i ] only if dG(i , j) ≤ (K − 1), where dG denotes the minimum number
of edges connecting vertices i and j ;

3 K trainable parameters, which is equal to the filter spatial extension
(similarly to standard 1D CNNs);

7 Filtering operation: O(N2) (linear complexity for standard CNNs).
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Parametrization of graph filters
Parametrization in the basis of Chebyshev polynomials

Let θd,c ∈ RK (K � N) such that for any n ∈ [0 . .N − 1]:

g (d,c)(λn) =
K−1∑
k=0

θd,c [k] · Tk(λ̃n)

with λ̃ = 2λ/λmax − 1 and Tk ∈ Pk(R) (Chebyshev polynomials) such that:
T0(u) = 1

T1(u) = u

Tk(u) = 2uTk−1(u)− Tk−2(u) for any k ≥ 2

3 K -localized filters: for any i , j ∈ [0 . .N − 1], ys,d [j ] is influenced by
xs,c [i ] only if dG(i , j) ≤ (K − 1), where dG denotes the minimum number
of edges connecting vertices i and j ;

3 K trainable parameters, which is equal to the filter spatial extension
(similarly to standard 1D CNNs);

3 Fast filtering operation with complexity O(K |E|)� O(N2) (takes
advantage of the sparsity of L).
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Learning graph convolution filters
Forward-propagation

Forward-propagation in O(SCD · K |E|):

ys,d =
C−1∑
c=0

(θd,c ∗(G) xs,c)

=
C−1∑
c=0

(TL(xs,c) · θd,c)

with:

θd,c ∈ RK vector of Chebyshev coefficients;

TL : RN → RN×K , computed in O(K |E|) with K recursive computations.
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Learning graph convolution filters
Gradient backpropagation

Gradient backpropagation in O(SCD · K |E|) (assuming |E| ∼ N):

∇(θd,c )E =
S−1∑
s=0

[
TL(xs,c)> · ∇(ys,d )E

]

∇(xs,c )E =
D−1∑
d=0

[
TL

(
∇(ys,d )E

)
· θd,c

]
where the loss E is computed over a minibatch of S samples.

Stochastic gradient descent: θd,c ←
(
θd,c − η · ∇(θd,c )E

)
20 / 32
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Section 4

Pooling layers on graphs
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From classical to graph pooling layers

Forward-propagation for any sample s and any output d :

Classical CNN:

Zs,d [n] = max
i∈{0,1}2

(
Ys,d [2n + i ]

) Graph CNN:

zs,d [n] = max
m∈πn

(
ys,d [m]

)
where πn ⊂ [0 . .N − 1] denotes the set
of neighboring nodes that are reduced
into one in the output graph.

Goal: find a graph structure G′ = (V ′, E ′,W′) with |V ′| = N ′ = dN/2e and a
grouping {πn}n∈[0..N′−1], such that local geometric structures are preserved.
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Graph coarsening using Graclus multilevel clustering algorithm

Graph clustering is NP-hard.

Approximation with a greedy algorithm: Graclus multilevel clustering.
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Fast pooling algorithm

Idea: rearrange vertices such that the pooling operation is computed over 2
consecutive nodes:

∀n ∈
[
0 . .N ′ − 1

]
, π(n) = {2n, 2n + 1}

Then:
zs,d [n] = max

i∈{0,1}2

(
ys,d [2n + i ]

)

Figure: From [2]
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Section 5

Numerical experiments
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Applying graph CNN on image classification

Sanity check for the model: it should at least perform well on standard
image classification tasks.

8-NN1 similarity graph of the 2D grid:

with weights: A[i , j ] = exp
(
− ‖z j−z i‖2

2

σ2

)
, where z i ∈ R2 is the coordinate

of pixel i on the grid.

Figure: Classical vs graph
CNN Figure: Different models of graph CNNs

1nearest neighbors
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Text categorization
Data structure

Text categorization problem on the 20NEWS dataset [4].

Using a bag-of-words model [5]: each document (input data) is
represented as a vector x ∈ RN with N = 10, 000 (most common words
in the corpus). x[i ] is the number of occurrences of word i in the
document.

Word2vec embedding [5]: each word i is semantically represented as a
vector z i ∈ Rd using (e.g. d = 640).

Data structure: 16-NN graph G = (V, E ,A), with:
– |V| = 10, 000;
– |E| = 132, 834 edges (connections between the nearest neighbors, using

the Euclidean distance induced by the word2vec embedding);

– weights: A[i , j] = exp

(
− ‖z j−z i‖2

2

σ2

)
.

Model trained for 20 epochs using Adam optimizer [6] and initial
learning rate η = 0.001.
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Text categorization
Results

Figure: Proposed model (GC32) is beaten
by multinomial Bayes classifier but
outperforms fully-connected newtorks with
much less parameters.

Figure: Linear complexity of the proposed
model w.r.t. the data dimensionality N (vs
O(N2) for non-parametric CNNs or graph
CNNs introduced in [7]).

Figure: Different models of graph CNNs
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Influence of graph structure on prediction accuracy

Figure: MNIST

Figure: 20NEWS

“bag-of-words”: naive embedding;

“learned”: embedding learned with word2vec [5];

“approximate”: approximate nearest-neighbors algorithm used for larger
datasets.

=⇒ The quality of the results strongly depend on the graph structure. It
must be designed in order to fulfill assumptions of locality and
stationarity, as in classical CNNs.
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Conclusion and perspectives

Defferrard and colleagues [2] proposed a model of graph CNN able to extract
local and stationary features from the data. Improvements with respect to
previous graph CNNs [7] are:

strictly localized convolution filters;

computational efficiency which is comparable to classical CNNs;

higher test accuracy.

Future work:

Explore applications to fields where the data naturally lies on graphs,
with explicit information about its structure;

Learn optimal graph structure in parallel to CNN parameters (instead of
using a pre-defined one).
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