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Introduction

ooy m Convolutional neural networks (CNNs), introduced in 1989 by Yann
LeCun [1], are able to learn local stationary structures which are
composed into multi-scale patterns. They led to breakthroughs in
image, video and sound recognition tasks.

m Defferard and colleagues [2] introduced a generalization of CNNs to
graphs, which encode complex data structures lying on irregular or
non-euclidean domains.
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ooy m Convolutional neural networks (CNNs), introduced in 1989 by Yann
LeCun [1], are able to learn local stationary structures which are
composed into multi-scale patterns. They led to breakthroughs in
image, video and sound recognition tasks.

m Defferard and colleagues [2] introduced a generalization of CNNs to
graphs, which encode complex data structures lying on irregular or
non-euclidean domains.

m Main challenges:

— Construct a convolution operator on irregular grids;

— Design strictly localized filters, as in standard CNNs;

— Compute forward- and backward-propagation with a linear complexity
w.r.t. the filter support’s size and the number of edges;

— Design an efficient pooling operator (which yields smaller graphs by
grouping vertices together);

— Obtain high experimental performance on both standard image and more
complex data recognition tasks.
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Background
on CNNs

Section 2

Background on CNNs
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Description of a convolutional layer

Forward-propagation:

Conv RelLu Pool

w
e Xy W)y, Relu, p Podl, 7

with:

B X, € ROMM y A, e ROXMXM and Z, € RP*N*N (feature maps for
the s-th training sample);

W ¢ RPXXiXi (convolution kernels — trainable parameters);

C,D > 0 (number of input and output feature maps);

M, N > 0 such that N < M (sizes of the input and output feature maps);
1 < M (size of the convolution kernels).

Conv: convolutional layer (see slide 7);

RelLu: rectified linear unit (non-linear pointwise operation);

Pool: pooling operator (e.g. max pooling).
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Background
on CNNs

[llustration of a convolutional layer

Computation of the d-th output feature map, for d € [0..D — 1]

c—1
Ys,d = bd + Z(Wd,c * Xs,c)

c=0

where * denotes the cross-correlation operator (slid sum-product).

Figure: c-th input feature map Xs,c € RM*M, for a given c € [0.. C — 1]
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Figure: c-th input feature map, extended with zeros (padding)
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[llustration of a convolutional layer

Computation of the d-th output feature map, for d € [0..D — 1]:

c—1
Ys,d = bd + § (Wd,c *Xs,c)
Background
on CNNs c=0

where x denotes the cross-correlation operator (slid sum-product).

Figure: Cross-correlation mapping the c-th input X ¢ (left, in blue) to the d-th
output, using the kernel Wy . € R¥*# (left, in orange). Right: (Wy o * Xs c).
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Convolution versus cross-correlation

m Matrix convolution product:

(UsV)[m,nl=> "> "U[i,j]-V[m—i,n—]]

i€Z jJEL

Background
on CNNs

m Cross-correlation:

(UxV)[m,n] => "> U[i,j]-V[m+i,n+]]

i€Z jJEL

Proposition 2.1

UxV=UxV

where U[m, n] = U[—m, —n].
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Learning convolution kernels

Description of a training step

Let's assume the following values have already been computed:
m E: loss computed over a minibatch of S samples;

L] {V(Ys,d)E‘S €[0..5-1],de€[0..D— 1]}: gradients w.r.t. the

P outputs;
Then, backpropagates the gradient in O(SCD - > N?):
s
Vg gE = D0 (Vv o) #Xse
s=1
D
VeoE = D (Vm,d)E) *Wa,c
d=1

Finally, update the weights using stochastic gradient descent:

W, « (Wd,c —n- V(wd,aE)

WE M
1

- — X Conv (W) Y — -~ —E

T

Ground truth
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[llustration of a pooling layer

Example of max pooling with size 2 x 2

For any sample s and any output d:

C Zoolm.r = max (Yool -+ i, 2n+)))

with Ys 4 € RV*N and Z, 4 € RIV/DX(V/2)
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Convolution
layers on
graphs

Section 3

Convolution layers on graphs
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Notations

m Graph G = (V, &, A), with:
o - V=N
e — A € RVXN such that A #0 = (i,j) € £.

m L € RV*N: positive semidefinite reference matrix for G;

U,A e RV with:
— U=[ug,...,uy_1]: eigenvectors of L (graph Fourier modes);
— N =diag(Xo, ..., An—1): eigenvalues of L (graph frequencies);

such that L= UAUT;
Input signal x € RY, defined on the nodes of G;

%: graph Fourier transform of x, such that x = U x.
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From classical to graph convolutions

Forward-propagation for any sample s and any output d:

Classical CNN:
Convolution c-1
Yoq= Z(wd,c *Xs.c)
c-1
(Wd c * Xs c)
c=0

according to proposition 2.1.

Xs,0 Yso0
Xs,1 Ys,1
Conv (W)
Xs,(c-1) Ys,(D-1)
Cinputs D outputs

Graph CNN:

c—-1
Yod = Y (Bac *(g) Xs,c)

c=0

where x(g) has to be defined.

Xs,0 ¥Ys,0
Xs,1 Ys,1
GConv (8)

Xs,(C-1) Ys,(D-1)
C inputs D outputs
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From classical to graph convolutions

Issue with spatial convolution: no unique definition of translation on graphs.

Convolution
layers on
graphs
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Graph convolution via Fourier transform

Instead, use convolution properties in the Fourier domain:

Cc—1
GV(xs) =¥sa = D _(Buc #(g) Xs.c)
Convolution c=0
layers on Xs. ¢
graphs 1 )¢
=Y U-gIN) U X
c=0

filtering

inverse Fourier transform

sum over all inputs

with g(®9) : R, — R and g(¢")(A) = diag (g(‘“)(,\o), . ,g(d’c)()\N—l)).

— For any input ¢ and output d, g(*9) only needs to be defined on the
graph frequencies Ao, ..., Any—_1, giving a weight to the corresponding

eigenspaces.
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Parametrization of graph filters

First approach: non-parametric filters

Convolution

byemen Let B4, € RY such that g(®9(\,) = 4.c[n] for any n € [0.. N —1].

graphs

X Not localized in space;
X N trainable parameters (< N for standard CNNs);
X Filtering operation: O(N?) (linear complexity for standard CNNis).
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Parametrization of graph filters

Polynomial parametrization — naive approach

Let 4. € R (K < N) such that for any n € [0.. N — 1]:

K—1
e 99 () =3 Ol - Xy
graphs k=0

v/ K-localized filters: for any i,j € [0.. N — 1], ys 4[] is influenced by
xs,c[i] only if dg(i,j) < (K — 1), where dg denotes the minimum number
of edges connecting vertices i and J;

v/ K trainable parameters, which is equal to the filter spatial extension
(similarly to standard 1D CNNs);

X Filtering operation: O(N?) (linear complexity for standard CNNis).
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Parametrization of graph filters

Parametrization in the basis of Chebyshev polynomials

Let 84, € R¥ (K < N) such that for any n € [0.. N — 1]:

K—1
) =3 Oa.clk] - Tu(n)
k=0
Convolution

SO with A = 2A/Amax — 1 and Tx € Pi(R) (Chebyshev polynomials) such that:

graphs

To(u) 1
Ti(u)=u
Ti(u) =2uTk—1(u) — Ti—2(u) forany k >2

v/ K-localized filters: for any i,j € [0.. N — 1], ys,4[j] is influenced by
xs,c[i] only if dg(i,j) < (K — 1), where dg denotes the minimum number
of edges connecting vertices i and J;

v/ K trainable parameters, which is equal to the filter spatial extension
(similarly to standard 1D CNNs);

/ Fast filtering operation with complexity O(K|E|) < O(N?) (takes
advantage of the sparsity of L).
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Learning graph convolution filters

Forward-propagation

Forward-propagation in O(SCD - K|&|):

Convolution Cc—1
[Syerton

graphs = Z (ﬁ(xs.c) : ed,c)
with:
m 04 € R¥ vector of Chebyshev coefficients;

m 70 RY — RV computed in O(K|E|) with K recursive computations.

Xs,0 V¥s0
Xs 1 ¥Ys1
GConv (8)
Xs,(C-1) Ys,(D-1)
C inputs D outputs
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Learning graph convolution filters

Gradient backpropagation

Gradient backpropagation in O(SCD - K|£|) (assuming |E] ~ N):

S—

9d ) E Z |:7—L Xsc) - (Ys,d)E}

s=0

,_.

Convolution
layers on
graphs

D-1
V(XS,C)E = Z |:71 (v()’sd)E> ! 0dv‘-‘j|
d=0
where the loss E is computed over a minibatch of S samples.

vy E (1)
!

e 4 Conv (8) y — = —E

T

Ground truth

Stochastic gradient descent: 04 . < (Od,c R V(edﬂc)E)
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Section 4

Pooling
layers on
graphs

Pooling layers on graphs
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From classical to graph pooling layers

Forward-propagation for any sample s and any output d:

Classical CNN: Graph CNN:
ZS = ( s H ) _
Pooling el "Er?oe?i(}z Ys.o[2n+ 1] zs,4[n] = n%aé (ys,d[m])
layers on
graphs where 7, C [0.. N — 1] denotes the set

‘ of neighboring nodes that are reduced
into one in the output graph.

Goal: find a graph structure G’ = (V', &', W’) with [V'| = N’ = [N/2] and a
grouping {mn}pepo..n7—1), such that local geometric structures are preserved.
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Pooling
layers on
graphs

Graph coarsening using Graclus multilevel clustering algorithm

m Graph clustering is NP-hard.

m Approximation with a greedy algorithm: Graclus multilevel clustering.
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Fast pooling algorithm

Idea: rearrange vertices such that the pooling operation is computed over 2
consecutive nodes:

Vne [0..N —1],m(n) ={2n,2n+ 1}

Then:
zoaln] = max (y.q2n+1)

Pooling ie{0,1}2
[
e
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Then:
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®) Go—bgl—bgz

geC
8

Figure: From [2]

[DI1]2|3|4|5|6[7|8]9|10|11|T e R
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Section 5

Numerical
experiments

Numerical experiments
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Applying graph CNN on image classification

m Sanity check for the model: it should at least perform well on standard
image classification tasks.

m 8-NN! similarity graph of the 2D grid:

( O—0O—) )

Numerical L 1 1 1
experiments - -

2
with weights: A[i,j] = exp (—”210722’“2) where z; € R? is the coordinate
of pixel i on the grid.

Model Accuracy Accuracy
Classical CNN 99.33 Dataset ~ Architecture Non-Param (2)  Spline (7) [4] Chebyshev (4)
Proposed graph CNN_ 99.14 MNIST  GC10 9575 9726 9748
MNIST  GC32-P4-GC64-P4-FC512 96.28 97.15 99.14
Figure: Classical vs graph
CNN Figure: Different models of graph CNNs

Inearest neighbors
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Text categorization

Data structure

m Text categorization problem on the 20NEWS dataset [4].

m Using a bag-of-words model [5]: each document (input data) is
represented as a vector x € R" with N = 10,000 (most common words

in the corpus). x[i] is the number of occurrences of word i in the
document.

Numerical
experiments
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m Text categorization problem on the 20NEWS dataset [4].

m Using a bag-of-words model [5]: each document (input data) is
represented as a vector x € R" with N = 10,000 (most common words
in the corpus). x[i] is the number of occurrences of word i in the
document.

m Word2vec embedding [5]: each word i is semantically represented as a

Numerical

SRS vector z; € R? using (e.g. d = 640).
m Data structure: 16-NN graph G = (V, &, A), with:
—~ V| = 10, 000;

— |E€] = 132,834 edges (connections between the nearest neighbors, using
the Euclidean distance induced by the word2vec embedding);

5.2
— weights: A[i,j] = exp (_M)

o2

m Model trained for 20 epochs using Adam optimizer [6] and initial
learning rate n = 0.001.
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Text categorization

Results

Model Accuracy

1200} *—*® Chebyshev
Multinomial Naive Bayes 68.51 g 800 N
Softmax 66.28 2 600 e
FC2500 64.64 = 400 o«
FC2500-FC500 65.76 200 e
GC32 68.26 0%5000 4000 6000 8000

10000 12000

Figure: Linear complexity of the proposed

model w.r.t. the data dimensionality N (vs
O(N?) for non-parametric CNNs or graph

CNNs introduced in [7]).

Figure: Proposed model (GC32) is beaten
by multinomial Bayes classifier but
outperforms fully-connected newtorks with
much less parameters.

Numerical
experiments

Accuracy
Dataset  Architecture Non-Param (2)  Spline (7) [4] Chebyshev (4)
MNIST GC10 95.75 97.26 97.48
MNIST GC32-P4-GC64-P4-FC512 96.28 97.15 99.14

Figure: Different models of graph CNNs
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Influence of graph structure on prediction accuracy

Architecture 8-NN on 2D Euclidean grid  random
GC32 9740 96.88
GC32-P4-GC64-P4-FC512 99.14 95.39
Figure: MNIST
word2vec
bag-of-words  pre-leamed learned approximate random
67.50 66.98 68.26 67.86 67.75

Numerical
experiments

Figure: 20NEWS

m “bag-of-words”: naive embedding;

m "learned”’: embedding learned with word2vec [5];

m “approximate”: approximate nearest-neighbors algorithm used for larger
datasets.

= The quality of the results strongly depend on the graph structure. It
must be designed in order to fulfill assumptions of locality and
stationarity, as in classical CNNs.
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Conclusion and perspectives

Defferrard and colleagues [2] proposed a model of graph CNN able to extract
local and stationary features from the data. Improvements with respect to
previous graph CNNs [7] are:

m strictly localized convolution filters;
m computational efficiency which is comparable to classical CNNs;

m higher test accuracy.

Conclusion
ELL

PR Future work:

m Explore applications to fields where the data naturally lies on graphs,
with explicit information about its structure;

m Learn optimal graph structure in parallel to CNN parameters (instead of
using a pre-defined one).
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