Paper summary of: Sevi, Rilling, and Borgnat "Harmonic analysis on directed graphs and applications: from Fourier analysis to wavelets", [SRB18]

Destouet, Gabriel

June 24, 2020

▶ The adjacency matrix *A* is real symmetric

- ► The adjacency matrix *A* is real symmetric
- ▶ Thus Laplacians $(L = D A, L_n, L_d, ...)$ have good spectral properties

- ► The adjacency matrix A is real symmetric
- ▶ Thus Laplacians $(L = D A, L_n, L_d, ...)$ have good spectral properties
 - diagonalizable with orthonormal basis and eigenvalues v_i in \mathbb{R}^+ and $v_i \leftrightarrow \omega$ frequency

- ► The adjacency matrix A is real symmetric
- ▶ Thus Laplacians $(L = D A, L_n, L_d, ...)$ have good spectral properties
 - diagonalizable with orthonormal basis and eigenvalues v_i in \mathbb{R}^+ and $v_i \leftrightarrow \omega$ frequency
- Filters or wavelet H as a finite polynomial sum of a reference operator R (e.g R = L):

- The adjacency matrix A is real symmetric
- ▶ Thus Laplacians $(L = D A, L_n, L_d, ...)$ have good spectral properties
 - diagonalizable with orthonormal basis and eigenvalues v_i in \mathbb{R}^+ and $v_i \leftrightarrow \omega$ frequency
- Filters or wavelet H as a finite polynomial sum of a reference operator R (e.g R=L):

$$H = h(L) = \sum_{k} \alpha_{k} L^{k} \tag{1}$$

- The adjacency matrix A is real symmetric
- ▶ Thus Laplacians $(L = D A, L_n, L_d, ...)$ have good spectral properties
 - diagonalizable with orthonormal basis and eigenvalues v_i in \mathbb{R}^+ and $v_i \leftrightarrow \omega$ frequency
- Filters or wavelet H as a finite polynomial sum of a reference operator R (e.g R = L):

$$H = h(L) = \sum_{k} \alpha_{k} L^{k} \tag{1}$$

Filters are defined with $\{\alpha_k\}_k$, wavelets by dilation s of h(sL)

► The adjacency matrix *A* is real **non symmetric**

- ► The adjacency matrix *A* is real **non symmetric**
- "Naive" Laplacians $(L = D A, L_n, L_d, ...)$ for undirected graphs are generally **not adapted**

- ► The adjacency matrix A is real **non symmetric**
- ▶ "Naive" Laplacians $(L = D A, L_n, L_d, ...)$ for undirected graphs are generally **not adapted**
 - − if diagonalizable, eigenvalues v_i in \mathbb{C} and $v_i \leftrightarrow ?$

- ► The adjacency matrix A is real **non symmetric**
- ▶ "Naive" Laplacians $(L = D A, L_n, L_d, ...)$ for undirected graphs are generally **not adapted**
 - if diagonalizable, eigenvalues v_i in \mathbb{C} and $v_i \leftrightarrow ?$
- ► In general: we are interested in operators which measure the smoothness of signals *f* and their spectral properties leads to Fourier-like basis.

- ► The adjacency matrix *A* is real **non symmetric**
- ▶ "Naive" Laplacians $(L = D A, L_n, L_d, ...)$ for undirected graphs are generally **not adapted**
 - if diagonalizable, eigenvalues v_i in \mathbb{C} and $v_i \leftrightarrow ?$
- ► In general: we are interested in operators which measure the smoothness of signals *f* and their spectral properties leads to Fourier-like basis.
- ► The questions are:

- ► The adjacency matrix A is real **non symmetric**
- ▶ "Naive" Laplacians $(L = D A, L_n, L_d, ...)$ for undirected graphs are generally **not adapted**
 - if diagonalizable, eigenvalues v_i in \mathbb{C} and $v_i \leftrightarrow ?$
- ► In general: we are interested in operators which measure the smoothness of signals *f* and their spectral properties leads to Fourier-like basis.
- ► The questions are:
 - 1. What type of Laplacian should we use to measure the smoothness of signals on directed graphs?

- ► The adjacency matrix A is real **non symmetric**
- ▶ "Naive" Laplacians $(L = D A, L_n, L_d, ...)$ for undirected graphs are generally **not adapted**
 - if diagonalizable, eigenvalues v_i in \mathbb{C} and $v_i \leftrightarrow ?$
- ▶ In general: we are interested in operators which measure the smoothness of signals f and their spectral properties leads to Fourier-like basis.
- ► The questions are:
 - 1. What type of Laplacian should we use to measure the smoothness of signals on directed graphs ?
 - 2. What reference operator can we use do define filters on directed graphs ?

- ► The adjacency matrix *A* is real **non symmetric**
- ▶ "Naive" Laplacians $(L = D A, L_n, L_d, ...)$ for undirected graphs are generally **not adapted**
 - if diagonalizable, eigenvalues v_i in \mathbb{C} and $v_i \leftrightarrow ?$
- ▶ In general: we are interested in operators which measure the smoothness of signals f and their spectral properties leads to Fourier-like basis.
- ► The questions are:
 - 1. What type of Laplacian should we use to measure the smoothness of signals on directed graphs ?
 - 2. What reference operator can we use do define filters on directed graphs ?
- ► The authors of [SRB18] propose to use the **random walk operator** on directed graphs:

- ► The adjacency matrix A is real **non symmetric**
- ▶ "Naive" Laplacians $(L = D A, L_n, L_d, ...)$ for undirected graphs are generally **not adapted**
 - if diagonalizable, eigenvalues v_i in \mathbb{C} and $v_i \leftrightarrow ?$
- ▶ In general: we are interested in operators which measure the smoothness of signals f and their spectral properties leads to Fourier-like basis.
- ► The questions are:
 - 1. What type of Laplacian should we use to measure the smoothness of signals on directed graphs ?
 - 2. What reference operator can we use do define filters on directed graphs ?
- ► The authors of [SRB18] propose to use the **random walk operator** on directed graphs:
 - It gives a Laplacian for directed graphs

- ► The adjacency matrix *A* is real **non symmetric**
- ▶ "Naive" Laplacians $(L = D A, L_n, L_d, ...)$ for undirected graphs are generally **not adapted**
 - if diagonalizable, eigenvalues v_i in \mathbb{C} and $v_i \leftrightarrow ?$
- ▶ In general: we are interested in operators which measure the smoothness of signals f and their spectral properties leads to Fourier-like basis.
- ► The questions are:
 - 1. What type of Laplacian should we use to measure the smoothness of signals on directed graphs ?
 - 2. What reference operator can we use do define filters on directed graphs ?
- ► The authors of [SRB18] propose to use the **random walk operator** on directed graphs:
 - It gives a Laplacian for directed graphs
 - and leads to a frequency interpretation of the spectral properties of A

From Adjacent Matrix to Random Walk Operator Given a graph $\mathcal{G}=(\mathcal{V},\mathcal{E},\mathcal{W})$, the Random Walk Operator is

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$P = D^{-1}W (2)$$

Where D^{-1} is the diagonal matrix of out-degrees of W, $D_{i,i} = \sum w_{i,j}$

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$P = D^{-1}W (2)$$

Where D^{-1} is the diagonal matrix of out-degrees of W, $D_{i,i} = \sum w_{i,i}$

 \triangleright P is the transition matrix of the Markov Chain defined on \mathcal{G}

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$P = D^{-1}W (2)$$

Where D^{-1} is the diagonal matrix of out-degrees of W, $D_{i,i} = \sum w_{i,j}$

 \triangleright P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$p(x,y) = P_{x,y} = \mathbb{P}(X_{n+1} = y | X_n = x)$$
 (3)

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$P = D^{-1}W (2)$$

Where D^{-1} is the diagonal matrix of out-degrees of W, $D_{i,i} = \sum w_{i,j}$

 \triangleright P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$p(x,y) = P_{x,y} = \mathbb{P}(X_{n+1} = y | X_n = x)$$
 (3)

Operations with the Random Walk Operator

(4)

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$P = D^{-1}W (2)$$

Where D^{-1} is the diagonal matrix of out-degrees of W, $D_{i,i} = \sum w_{i,j}$

 \triangleright P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$p(x,y) = P_{x,y} = \mathbb{P}(X_{n+1} = y | X_n = x)$$
 (3)

Operations with the Random Walk Operator

Left and right operations of P:

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$P = D^{-1}W (2)$$

Where D^{-1} is the diagonal matrix of out-degrees of W, $D_{i,i} = \sum w_{i,j}$

 \triangleright P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$p(x,y) = P_{x,y} = \mathbb{P}(X_{n+1} = y | X_n = x)$$
 (3)

Operations with the Random Walk Operator

Left and right operations of P:

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$P = D^{-1}W (2)$$

Where D^{-1} is the diagonal matrix of out-degrees of W, $D_{i,i} = \sum w_{i,i}$

 \triangleright P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$p(x,y) = P_{x,y} = \mathbb{P}(X_{n+1} = y | X_n = x)$$
 (3)

Operations with the Random Walk Operator

Left and right operations of *P*:

$$Pf(x) = \sum p(x, y)f(y) = \mathbb{E}_{\mathbb{P}_{Y|X}}[f]$$
 (4)

mass averaged and propagated back to child node x

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$P = D^{-1}W (2)$$

Where D^{-1} is the diagonal matrix of out-degrees of W, $D_{i,i} = \sum w_{i,i}$

 \triangleright P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$p(x,y) = P_{x,y} = \mathbb{P}(X_{n+1} = y | X_n = x)$$
 (3)

Operations with the Random Walk Operator

Left and right operations of *P*:

$$Pf(x) = \sum p(x, y)f(y) = \mathbb{E}_{\mathbb{P}_{Y|X}}[f]$$
 (4)

mass averaged and propagated back to child node \times

$$\pi P(y) = \sum \pi(x) p(x, y) \tag{5}$$

▶ It is *irreducible* if:

$$\forall x, y \in \mathcal{V}, \exists m < \infty : \mathbb{P}(X_{n+m} = y | x_n = x) > 0$$
 (6)

This is equivalent to say that G is strongly connected.

It is irreducible if:

$$\forall x, y \in \mathcal{V}, \exists m < \infty : \mathbb{P}(X_{n+m} = y | x_n = x) > 0$$
 (6)

This is equivalent to say that $\mathcal G$ is strongly connected.

aperiodic if :

$$\forall x \in \mathcal{V}, \gcd\{n \in \mathbb{N}^+ : \mathbb{P}(X_{m+n} = x | X_m = x) > 0\} = 1 \quad (7)$$

It is *irreducible* if:

$$\forall x, y \in \mathcal{V}, \exists m < \infty : \mathbb{P}(X_{n+m} = y | x_n = x) > 0$$
 (6)

This is equivalent to say that $\mathcal G$ is strongly connected.

aperiodic if :

$$\forall x \in \mathcal{V}, \gcd\{n \in \mathbb{N}^+ : \mathbb{P}(X_{m+n} = x | X_m = x) > 0\} = 1 \quad (7)$$

▶ ergodic if aperiodic and irreducible

It is *irreducible* if:

$$\forall x, y \in \mathcal{V}, \exists m < \infty : \mathbb{P}(X_{n+m} = y | x_n = x) > 0$$
 (6)

This is equivalent to say that $\mathcal G$ is strongly connected.

aperiodic if :

$$\forall x \in \mathcal{V}, \gcd\{n \in \mathbb{N}^+ : \mathbb{P}(X_{m+n} = x | X_m = x) > 0\} = 1 \quad (7)$$

- ergodic if aperiodic and irreducible
- **reversible** if $P^* = P$, where

$$P_{x,y}^* = p^*(x,y) = \mathbb{P}(X_n = y | X_{n+1} = x)$$
 (8)

It is *irreducible* if:

$$\forall x, y \in \mathcal{V}, \exists m < \infty : \mathbb{P}(X_{n+m} = y | x_n = x) > 0$$
 (6)

This is equivalent to say that $\mathcal G$ is strongly connected.

aperiodic if :

$$\forall x \in \mathcal{V}, \gcd\{n \in \mathbb{N}^+ : \mathbb{P}(X_{m+n} = x | X_m = x) > 0\} = 1 \quad (7)$$

- ergodic if aperiodic and irreducible
- **reversible** if $P^* = P$, where

$$P_{x,y}^* = p^*(x,y) = \mathbb{P}(X_n = y | X_{n+1} = x)$$
 (8)

▶ If P is ergodic, P has a single eigenvalue $\lambda_{\max} = 1$ and $\{\forall \lambda \neq 1, |\lambda| < 1\}$ (Perron-Frobenius Theorem)¹

It is *irreducible* if:

$$\forall x, y \in \mathcal{V}, \exists m < \infty : \mathbb{P}(X_{n+m} = y | x_n = x) > 0$$
 (6)

This is equivalent to say that \mathcal{G} is strongly connected.

aperiodic if :

$$\forall x \in \mathcal{V}, \gcd\{n \in \mathbb{N}^+ : \mathbb{P}(X_{m+n} = x | X_m = x) > 0\} = 1 \quad (7)$$

- ergodic if aperiodic and irreducible
- **reversible** if $P^* = P$, where

$$P_{x,y}^* = p^*(x,y) = \mathbb{P}(X_n = y | X_{n+1} = x)$$
 (8)

▶ If P is *ergodic*, P has a single eigenvalue $\lambda_{\max} = 1$ and $\{\forall \lambda \neq 1, |\lambda| < 1\}$ (Perron-Frobenius Theorem)¹

¹Actually if *P* is irreducible, we almost have the same properties, see [Mey00. Chap.8]

Relation between P and P^*

In [SRB18] they require that P is *ergodic* to have

$$p^*(x,y) = \frac{\pi(y)}{\pi(x)}p(y,x) \tag{9}$$

$$\Leftrightarrow P^* = \Pi^{-1} P^T \Pi \tag{10}$$

Where $\Pi = \operatorname{diag}(\pi(v_1), \dots, \pi(v_N)), v_i \in \mathcal{V}$

Relation between P and P^*

In [SRB18] they require that *P* is *ergodic* to have

$$p^*(x,y) = \frac{\pi(y)}{\pi(x)} p(y,x)$$
 (9)

$$\Leftrightarrow P^* = \Pi^{-1}P^T\Pi \tag{10}$$

Where $\Pi = \operatorname{diag}(\pi(v_1), \dots, \pi(v_N)), v_i \in \mathcal{V}$

▶ But eq. (10) can be obtained by applying the Bayes's rule for general P

Relation between P and P^*

In [SRB18] they require that P is ergodic to have

$$p^*(x,y) = \frac{\pi(y)}{\pi(x)} p(y,x)$$
 (9)

$$\Leftrightarrow P^* = \Pi^{-1}P^T\Pi \tag{10}$$

Where $\Pi = \operatorname{diag}(\pi(v_1), \dots, \pi(v_N)), v_i \in \mathcal{V}$

- ▶ But eq. (10) can be obtained by applying the Bayes's rule for general P
- Maybe the authors of [SRB18] need *ergodicity* to estimate π via power iteration method or MCMC methods since:

$$P^{n}(x,.) \xrightarrow[n \to \infty]{} \pi(x) \tag{11}$$

When P is ergodic.

Relation between P and P^*

In [SRB18] they require that P is *ergodic* to have

$$p^*(x,y) = \frac{\pi(y)}{\pi(x)} p(y,x)$$
 (9)

$$\Leftrightarrow P^* = \Pi^{-1}P^T\Pi \tag{10}$$

Where $\Pi = \operatorname{diag}(\pi(v_1), \dots, \pi(v_N)), v_i \in \mathcal{V}$

- ▶ But eq. (10) can be obtained by applying the Bayes's rule for general *P*
- Maybe the authors of [SRB18] need *ergodicity* to estimate π via power iteration method or MCMC methods since:

$$P^{n}(x,.) \xrightarrow[n \to \infty]{} \pi(x) \tag{11}$$

When *P* is *ergodic*.

Actually, π can also be estimated if P is only *irreducible*, see [Mey00, Chap.8]

Two transformations of P

With P irreducible

► To make *P aperiodic* (and thus *ergodic*)

$$\tilde{\mathcal{P}} = \{ \tilde{P}_{\gamma} : \tilde{P}_{\gamma} = (1 - \gamma)P + \gamma I \mid \gamma \in [0, 1] \}$$
 (12)

 \tilde{P} has the same eigenspace than P but is aperiodic

Two transformations of P

With P irreducible

► To make *P aperiodic* (and thus *ergodic*)

$$\tilde{\mathcal{P}} = \{ \tilde{P}_{\gamma} : \tilde{P}_{\gamma} = (1 - \gamma)P + \gamma \mathbf{I} \mid \gamma \in [0, 1] \}$$
 (12)

 \tilde{P} has the same eigenspace than P but is aperiodic

Set of convex combination of P and P*

$$\bar{\mathcal{P}} = \{ \bar{P}_{\alpha} : \bar{P}_{\alpha} = (1 - \alpha)P + \alpha P^* \mid \alpha \in [0, 1] \}$$
 (13)

Only $\bar{P}_{1/2} = \bar{P}$ is reversible.

▶ On \mathcal{G} , space of graph signals $f, g \in \ell^2(\mathcal{V})$ with

$$\langle f, g \rangle = \sum_{x \in \mathcal{V}} f(x) \bar{g}(x)$$

▶ On \mathcal{G} , space of graph signals $f, g \in \ell^2(\mathcal{V})$ with

$$\langle f, g \rangle = \sum_{x \in \mathcal{V}} f(x) \bar{g}(x)$$

▶ On \mathcal{G} with π , space of graph signals $f, g \in \ell^2(\mathcal{V}, \pi)$ with

$$\langle f, g \rangle_{\pi} = \sum_{\mathbf{x} \in \mathcal{V}} f(\mathbf{x}) \bar{g}(\mathbf{x}) \pi(\mathbf{x})$$

▶ On \mathcal{G} , space of graph signals $f, g \in \ell^2(\mathcal{V})$ with

$$\langle f, g \rangle = \sum_{x \in \mathcal{V}} f(x) \bar{g}(x)$$

▶ On $\mathcal G$ with π , space of graph signals $f,g\in\ell^2(\mathcal V,\pi)$ with

$$\langle f, g \rangle_{\pi} = \sum_{x \in \mathcal{V}} f(x) \bar{g}(x) \pi(x)$$

lacktriangle We have an isometry ψ between $\ell^2(\mathcal{V})$ and $\ell^2(\mathcal{V},\pi)$

$$\forall f \in \ell^2(\mathcal{V}), \quad \psi : f \mapsto \Pi^{-1/2}f$$

▶ On \mathcal{G} , space of graph signals $f, g \in \ell^2(\mathcal{V})$ with

$$\langle f, g \rangle = \sum_{x \in \mathcal{V}} f(x) \bar{g}(x)$$

▶ On $\mathcal G$ with π , space of graph signals $f,g\in\ell^2(\mathcal V,\pi)$ with

$$\langle f, g \rangle_{\pi} = \sum_{x \in \mathcal{V}} f(x) \bar{g}(x) \pi(x)$$

• We have an isometry ψ between $\ell^2(\mathcal{V})$ and $\ell^2(\mathcal{V},\pi)$

$$\forall f \in \ell^2(\mathcal{V}), \quad \psi : f \mapsto \Pi^{-1/2}f$$

▶ In particular, P and P^* are adjoint in $\ell^2(\mathcal{V}, \pi)$:

$$\langle f, Pg \rangle_{\pi} = \langle P^* f, g \rangle_{\pi} \tag{14}$$

▶ On \mathcal{G} , space of graph signals $f, g \in \ell^2(\mathcal{V})$ with

$$\langle f, g \rangle = \sum_{x \in \mathcal{V}} f(x) \bar{g}(x)$$

▶ On $\mathcal G$ with π , space of graph signals $f,g\in\ell^2(\mathcal V,\pi)$ with

$$\langle f, g \rangle_{\pi} = \sum_{x \in \mathcal{V}} f(x) \bar{g}(x) \pi(x)$$

• We have an isometry ψ between $\ell^2(\mathcal{V})$ and $\ell^2(\mathcal{V},\pi)$

$$\forall f \in \ell^2(\mathcal{V}), \quad \psi : f \mapsto \Pi^{-1/2}f$$

▶ In particular, P and P^* are adjoint in $\ell^2(\mathcal{V}, \pi)$:

$$\langle f, Pg \rangle_{\pi} = \langle P^*f, g \rangle_{\pi} \tag{14}$$

 $ightharpoonup ar{P}$ is self adjoint and thus has an orthonormal eigenbasis.

► First introduce *T*

$$T = \Pi^{1/2} P \Pi^{-1/2}$$

Which is equivalent to $\psi^{-1}P\psi$

► First introduce *T*

$$T = \Pi^{1/2} P \Pi^{-1/2}$$

Which is equivalent to $\psi^{-1}P\psi$

▶ Let \mathcal{L} in $\ell^2(\mathcal{V})$

$$\mathcal{L} = I - \frac{T + T^T}{2} \tag{15}$$

► First introduce *T*

$$T = \Pi^{1/2} P \Pi^{-1/2}$$

Which is equivalent to $\psi^{-1}P\psi$

▶ Let \mathcal{L} in $\ell^2(\mathcal{V})$

$$\mathcal{L} = I - \frac{T + T^T}{2} \tag{15}$$

▶ Let \mathcal{L}_{RW} in $\ell^2(\mathcal{V}, \pi)$

$$\mathcal{L}_{RW} = I - \bar{P} \tag{16}$$

► First introduce *T*

$$T = \Pi^{1/2} P \Pi^{-1/2}$$

Which is equivalent to $\psi^{-1}P\psi$

▶ Let \mathcal{L} in $\ell^2(\mathcal{V})$

$$\mathcal{L} = I - \frac{T + T^T}{2} \tag{15}$$

Let \mathcal{L}_{RW} in $\ell^2(\mathcal{V},\pi)$

$$\mathcal{L}_{RW} = I - \bar{P} \tag{16}$$

 $\mathcal{L}=\psi^{-1}\mathcal{L}_{RW}\psi.$ \mathcal{L}_{RW} and \bar{P} have the same (orthonormal) eigenspace.

lacktriangle Dirichlet energy of a graph signal $f\in\ell^2(\mathcal{V},\pi)$ on P

(19)

▶ Dirichlet energy of a graph signal $f \in \ell^2(\mathcal{V}, \pi)$ on P

$$\mathcal{D}_{\pi,P}^{2}(f) = \frac{1}{2} \sum_{(x,y) \in \mathcal{E}} \pi(x) p(x,y) |f(x) - f(y)|^{2}$$
 (17)

(19)

▶ Dirichlet energy of a graph signal $f \in \ell^2(\mathcal{V}, \pi)$ on P

$$\mathcal{D}_{\pi,P}^{2}(f) = \frac{1}{2} \sum_{(x,y) \in \mathcal{E}} \pi(x) p(x,y) |f(x) - f(y)|^{2}$$
 (17)

$$= \langle f, \mathcal{L}_{RW} f \rangle_{\pi} \tag{18}$$

(19)

▶ Dirichlet energy of a graph signal $f \in \ell^2(\mathcal{V}, \pi)$ on P

$$\mathcal{D}_{\pi,P}^{2}(f) = \frac{1}{2} \sum_{(x,y) \in \mathcal{E}} \pi(x) p(x,y) |f(x) - f(y)|^{2}$$
 (17)

$$= \langle f, \mathcal{L}_{RW} f \rangle_{\pi} \tag{18}$$

$$\mathcal{R}_{\pi,P}(f) = \frac{\mathcal{D}_{\pi,P}^2 f}{\|f\|_{\pi}^2} \tag{19}$$

Where $\mathcal{R}_{\pi,P}$ is the Rayleigh quotient.

▶ Dirichlet energy of a graph signal $f \in \ell^2(\mathcal{V}, \pi)$ on P

$$\mathcal{D}_{\pi,P}^{2}(f) = \frac{1}{2} \sum_{(x,y) \in \mathcal{E}} \pi(x) p(x,y) |f(x) - f(y)|^{2}$$
 (17)

$$= \langle f, \mathcal{L}_{RW} f \rangle_{\pi} \tag{18}$$

$$\mathcal{R}_{\pi,P}(f) = \frac{\mathcal{D}_{\pi,P}^2 f}{\|f\|_{\pi}^2} \tag{19}$$

Where $\mathcal{R}_{\pi,P}$ is the Rayleigh quotient.

▶ For any eigenvectors ξ of P with eigenvalue ν .

$$\mathcal{R}_{\pi,P}(\xi) = 1 - \Re(\nu) \tag{20}$$

▶ Dirichlet energy of a graph signal $f \in \ell^2(\mathcal{V}, \pi)$ on P

$$\mathcal{D}_{\pi,P}^{2}(f) = \frac{1}{2} \sum_{(x,y) \in \mathcal{E}} \pi(x) p(x,y) |f(x) - f(y)|^{2}$$
 (17)

$$= \langle f, \mathcal{L}_{RW} f \rangle_{\pi} \tag{18}$$

$$\mathcal{R}_{\pi,P}(f) = \frac{\mathcal{D}_{\pi,P}^2 f}{\|f\|_{\pi}^2} \tag{19}$$

Where $\mathcal{R}_{\pi,P}$ is the Rayleigh quotient.

▶ For any eigenvectors ξ of P with eigenvalue ν .

$$\mathcal{R}_{\pi,P}(\xi) = 1 - \Re(\nu) \tag{20}$$

For each (ξ, ν) of P we are able to associate a frequency $\omega = 1 - \Re(\nu) \in [0, 2]$

ightharpoonup Example of the classical circulant matrix where $P=C_N$

$$C_{N} = \begin{pmatrix} 0 & 1 & \cdots & \cdots & 0 \\ \vdots & 0 & 1 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & 1 \\ 1 & 0 & \cdots & \cdots & 0 \end{pmatrix}$$

- ightharpoonup Example of the classical circulant matrix where $P=C_N$
- The authors [SRB18] consider a transformation \tilde{P}_{γ} of P in order to have an irreducible and aperiodic (ergodic) operator and find:

$$\mathcal{R}_{\pi,P}(\xi_k) = (1-\gamma)(1-\cos(\frac{2\pi(k-1)}{N})) = \omega_k$$

- ightharpoonup Example of the classical circulant matrix where $P=C_N$
- ▶ The authors [SRB18] consider a transformation \tilde{P}_{γ} of P in order to have an irreducible and aperiodic (ergodic) operator and find:

$$\mathcal{R}_{\pi,P}(\xi_k) = (1-\gamma)(1-\cos(\frac{2\pi(k-1)}{N})) = \omega_k$$

By ordering the frequencies with the eigenvectors, we retrieve the classical results of signal processing

- ightharpoonup Example of the classical circulant matrix where $P=C_N$
- ▶ The authors [SRB18] consider a transformation \tilde{P}_{γ} of P in order to have an irreducible and aperiodic (ergodic) operator and find:

$$\mathcal{R}_{\pi,P}(\xi_k) = (1-\gamma)(1-\cos(\frac{2\pi(k-1)}{N})) = \omega_k$$

- By ordering the frequencies with the eigenvectors, we retrieve the classical results of signal processing
- \blacktriangleright By taking the limit $\gamma \to 0,$ they could also define frequency for P

- ightharpoonup Example of the classical circulant matrix where $P=C_N$
- ▶ The authors [SRB18] consider a transformation \tilde{P}_{γ} of P in order to have an irreducible and aperiodic (ergodic) operator and find:

$$\mathcal{R}_{\pi,P}(\xi_k) = (1-\gamma)(1-\cos(\frac{2\pi(k-1)}{N})) = \omega_k$$

- By ordering the frequencies with the eigenvectors, we retrieve the classical results of signal processing
- ▶ By taking the limit $\gamma \to 0$, they could also define frequency for P (do we need P ergodic ?)

- ightharpoonup Example of the classical circulant matrix where $P=C_N$
- ▶ The authors [SRB18] consider a transformation \tilde{P}_{γ} of P in order to have an irreducible and aperiodic (ergodic) operator and find:

$$\mathcal{R}_{\pi,P}(\xi_k) = (1-\gamma)(1-\cos(\frac{2\pi(k-1)}{N})) = \omega_k$$

- By ordering the frequencies with the eigenvectors, we retrieve the classical results of signal processing
- ▶ By taking the limit $\gamma \to 0$, they could also define frequency for P (do we need P ergodic?)
- ▶ Extension to the case of toroidal graph $\mathcal{T}_{m,n} = \mathcal{C}_m \square \mathcal{C}_n$ where $\mathcal{C}_m, \mathcal{C}_n$ are directed cycle graphs.

Graph filters with the Random Walk Operator

As a reference operator, choose R = P

Graph filters with the Random Walk Operator

As a reference operator, choose R = P

► Graph Filter *H* as a polynomial sum of *P*

$$H = \sum_{k} \theta_{k} P^{k}$$

Graph filters with the Random Walk Operator

As a reference operator, choose R = P

▶ Graph Filter H as a linear combination of spectral projectors \mathbf{E}_{ν_k} associated with eigenvalues ν_k

$$H_{\omega} = \sum_{k} \gamma_{k} \mathbf{E}_{\nu_{k}} \tag{21}$$

$$=\sum_{\omega\in\boldsymbol{\omega}}\tau_{\omega}S_{\omega}\tag{22}$$

Where

$$S_{\omega} = \sum_{
u \,:\, \omega \,=\, 1 - \Re(
u)} \mathsf{E}_{
u}$$

By defining $h: \omega \to \mathbb{R}(\mathbb{C})$, we have the graph filter with frequency response

$$H = \sum_{\omega \in \omega} h(\omega) S_{\omega}$$

Multiresolution analysis on directed graph

lacktriangle Bank of synthesis ${\cal K}$ and analysis ${ ilde {\cal K}}$ defined as :

$$\mathcal{K} = \{H_{t_J}, G_{t_1}, \dots, G_{t_J}\}$$
 (23)

$$\tilde{\mathcal{K}} = \{\tilde{H}_{t_J}, \tilde{G}_{t_1}, \dots, \tilde{G}_{t_J}\}$$
 (24)

Where

$$H_t = \sum_k h(t\omega_k) S_k$$
 where h is a low pass (25)

$$G_t = \sum_k g(t\omega_k)S_k$$
 where g is a high pass (26)

With S_k the random walk spectral projectors previously defined associated to mono-frequencies ω_k

• Wavelets: $h_{t_J,k} = H_{t_J} \delta_k$ and $g_{t_i,k} = G_{t_i} \delta_k$

▶ Use the diffusion operator $T = \Pi^{1/2}P\Pi^{-1/2}$ to find the bases (scaling functions) $\{\Phi_j\}_{1 \leq j \leq J}$ of nested spaces $\{V_j\}_{1 \leq j \leq J}, V_J \subset V_{J-1} \cdots \subset V_0$

- ▶ Use the diffusion operator $T = \Pi^{1/2}P\Pi^{-1/2}$ to find the bases (scaling functions) $\{\Phi_j\}_{1 \leq j \leq J}$ of nested spaces $\{V_j\}_{1 \leq j \leq J}, V_J \subset V_{J-1} \cdots \subset V_0$
- Sketch of the algorithm:

- ▶ Use the diffusion operator $T = \Pi^{1/2}P\Pi^{-1/2}$ to find the bases (scaling functions) $\{\Phi_j\}_{1 \leq j \leq J}$ of nested spaces $\{V_j\}_{1 \leq j \leq J}, V_J \subset V_{J-1} \cdots \subset V_0$
- Sketch of the algorithm:
 - 1. Start with : $\Phi_0 = \{\delta_k\}_k$, $p = 2^0$

- ▶ Use the diffusion operator $T = \Pi^{1/2}P\Pi^{-1/2}$ to find the bases (scaling functions) $\{\Phi_j\}_{1 \leq j \leq J}$ of nested spaces $\{V_j\}_{1 \leq j \leq J}, V_J \subset V_{J-1} \cdots \subset V_0$
- ► Sketch of the algorithm:
 - 1. Start with : $\Phi_0 = \{\delta_k\}_k$, $p = 2^0$
 - 2. Compute $\tilde{\Phi}_1 = T^p \Phi_0$

- ▶ Use the diffusion operator $T = \Pi^{1/2}P\Pi^{-1/2}$ to find the bases (scaling functions) $\{\Phi_j\}_{1 \leq j \leq J}$ of nested spaces $\{V_j\}_{1 \leq j \leq J}, V_J \subset V_{J-1} \cdots \subset V_0$
- Sketch of the algorithm:
 - 1. Start with : $\Phi_0 = \{\delta_k\}_k$, $p = 2^0$
 - 2. Compute $\tilde{\Phi}_1 = T^p \Phi_0$
 - 3. Prune $\tilde{\Phi}_1$ to obtain Φ_1 such that $\|\tilde{\Phi}_1 \Phi_1\|_F$ is minimal

- ▶ Use the diffusion operator $T = \Pi^{1/2}P\Pi^{-1/2}$ to find the bases (scaling functions) $\{\Phi_j\}_{1 \leq j \leq J}$ of nested spaces $\{V_j\}_{1 \leq j \leq J}, V_J \subset V_{J-1} \cdots \subset V_0$
- Sketch of the algorithm:
 - 1. Start with : $\Phi_0 = \{\delta_k\}_k$, $p = 2^0$
 - 2. Compute $\tilde{\Phi}_1 = T^p \Phi_0$
 - 3. Prune $\tilde{\Phi}_1$ to obtain Φ_1 such that $\|\tilde{\Phi}_1 \Phi_1\|_F$ is minimal
 - 4. Update $p \leftarrow 2 * p$

- ▶ Use the diffusion operator $T = \Pi^{1/2}P\Pi^{-1/2}$ to find the bases (scaling functions) $\{\Phi_j\}_{1 \leq j \leq J}$ of nested spaces $\{V_j\}_{1 \leq j \leq J}, V_J \subset V_{J-1} \cdots \subset V_0$
- Sketch of the algorithm:
 - 1. Start with : $\Phi_0 = \{\delta_k\}_k$, $p = 2^0$
 - 2. Compute $\tilde{\Phi}_1 = T^p \Phi_0$
 - 3. Prune $\tilde{\Phi}_1$ to obtain Φ_1 such that $\|\tilde{\Phi}_1 \Phi_1\|_F$ is minimal
 - 4. Update $p \leftarrow 2 * p$
 - 5. Compute $\tilde{\Phi}_2 = T^p \Phi_1$

- ▶ Use the diffusion operator $T = \Pi^{1/2}P\Pi^{-1/2}$ to find the bases (scaling functions) $\{\Phi_j\}_{1 \leq j \leq J}$ of nested spaces $\{V_j\}_{1 \leq j \leq J}, V_J \subset V_{J-1} \cdots \subset V_0$
- Sketch of the algorithm:
 - 1. Start with : $\Phi_0 = \{\delta_k\}_k$, $p = 2^0$
 - 2. Compute $\tilde{\Phi}_1 = T^p \Phi_0$
 - 3. Prune $\tilde{\Phi}_1$ to obtain Φ_1 such that $\|\tilde{\Phi}_1 \Phi_1\|_F$ is minimal
 - 4. Update $p \leftarrow 2 * p$
 - 5. Compute $\tilde{\Phi}_2 = T^p \Phi_1$
 - 6. Prune $\tilde{\Phi}_2$ to obtain Φ_2 such that $\|\tilde{\Phi}_2 \Phi_2\|_F$ is minimal

- ▶ Use the diffusion operator $T = \Pi^{1/2}P\Pi^{-1/2}$ to find the bases (scaling functions) $\{\Phi_j\}_{1 \leq j \leq J}$ of nested spaces $\{V_j\}_{1 \leq j \leq J}, V_J \subset V_{J-1} \cdots \subset V_0$
- Sketch of the algorithm:
 - 1. Start with : $\Phi_0 = \{\delta_k\}_k$, $p = 2^0$
 - 2. Compute $\tilde{\Phi}_1 = T^p \Phi_0$
 - 3. Prune $\tilde{\Phi}_1$ to obtain Φ_1 such that $\|\tilde{\Phi}_1 \Phi_1\|_F$ is minimal
 - 4. Update $p \leftarrow 2 * p$
 - 5. Compute $\tilde{\Phi}_2 = T^p \Phi_1$
 - 6. Prune $\tilde{\Phi}_2$ to obtain Φ_2 such that $\|\tilde{\Phi}_2 \Phi_2\|_F$ is minimal

:

- ▶ Use the diffusion operator $T = \Pi^{1/2}P\Pi^{-1/2}$ to find the bases (scaling functions) $\{\Phi_j\}_{1 \leq j \leq J}$ of nested spaces $\{V_j\}_{1 \leq j \leq J}, V_J \subset V_{J-1} \cdots \subset V_0$
- ► Sketch of the algorithm:
 - 1. Start with : $\Phi_0 = \{\delta_k\}_k$, $p = 2^0$
 - 2. Compute $\tilde{\Phi}_1 = T^p \Phi_0$
 - 3. Prune $\tilde{\Phi}_1$ to obtain Φ_1 such that $\|\tilde{\Phi}_1 \Phi_1\|_F$ is minimal
 - 4. Update $p \leftarrow 2 * p$
 - 5. Compute $\tilde{\Phi}_2 = T^p \Phi_1$
 - 6. Prune $\tilde{\Phi}_2$ to obtain Φ_2 such that $\|\tilde{\Phi}_2 \Phi_2\|_F$ is minimal .
- Get a set of scaling functions Φ_j spanning spaces V_j .

- ▶ Use the diffusion operator $T = \Pi^{1/2}P\Pi^{-1/2}$ to find the bases (scaling functions) $\{\Phi_j\}_{1 \leq j \leq J}$ of nested spaces $\{V_j\}_{1 \leq j \leq J}, V_J \subset V_{J-1} \cdots \subset V_0$
- Sketch of the algorithm:
 - 1. Start with : $\Phi_0 = \{\delta_k\}_k$, $p = 2^0$
 - 2. Compute $\tilde{\Phi}_1 = T^p \Phi_0$
 - 3. Prune $\tilde{\Phi}_1$ to obtain Φ_1 such that $\|\tilde{\Phi}_1 \Phi_1\|_F$ is minimal
 - 4. Update $p \leftarrow 2 * p$
 - 5. Compute $\tilde{\Phi}_2 = T^p \Phi_1$
 - 6. Prune $\tilde{\Phi}_2$ to obtain Φ_2 such that $\|\tilde{\Phi}_2 \Phi_2\|_F$ is minimal :
- Get a set of scaling functions Φ_i spanning spaces V_i .
- Diffusion wavelets Ψ_j are obtained as the bases of the complement W_j of V_{j+1} in V_j

$$\Psi_j = \Phi_j - \Phi_{j+1} \Phi_j^t \Phi_{j+1}$$

Some wavelets and scaling functions with diffusion method on cycle graph

FIGURE 10. Orthogonal and biorthogonal scaling functions on the directed cycle graph C_{256} .

Some wavelets and scaling functions with diffusion method on cycle graph

FIGURE 11. Orthogonal and biorthogonal wavelet functions on the directed cycle graph \mathcal{C}_{256} .

Comparison between scaling functions from Graph Filters and from diffusion

► Case 2: Use the spectral properties of $\bar{T}_{\alpha} = \Pi^{1/2} \bar{P}_{\alpha} \Pi^{-1/2}$ to define:

$$H_{\alpha} = \sum_{\omega \in \boldsymbol{\omega}} h(tw) S_{w,\alpha}$$

With $t = 2^4$ and h(x) = exp(-x).

► Case 3: For different scales j: $\{T^{2^j}\}_{j=1}^5$ for diffusion wavelet and $\{\bar{T}^{2^j}\}_{j=1}^5$ for spectral wavelets

Comparison between scaling functions from Graph Filters and from diffusion

FIGURE 13. 50^{th} scaling function at scale 4 on a graph $\mathcal{G} \sim \text{DWS}(64, 2, 0.02), \alpha \in \{0, 0.5, 1\}, \text{ eq. } \boxed{33}$.

Comparison between scaling functions from Graph Filters and from diffusion

FIGURE 14. Orthogonal and bi-orthogonal scaling functions built w.r.t the diffusion wavelet framework versus scaling function built w.r.t spectral wavelets framework.

Semi-supervised Learning

▶ Method 1: for y in $\ell^2(\mathcal{V})$

$$\underset{f}{\operatorname{argmin}} c \|M_I(f-y)\|^2 + c\|(I-M_I)f\|^2 + \rho_2\langle f, \mathcal{L}f\rangle$$

Where M_l is the diagonal matrix with 0 on vertices with unknown labels

▶ Method 2: for y in $\ell^2(\mathcal{V}, \pi)$

$$\underset{f}{\operatorname{argmin}} \ c \| \mathit{M_I}(f-y) \|_{\pi}^2 + c \| (\mathrm{I} - \mathit{M_I}) f \|_{\pi}^2 + \rho_2 \langle f \,, \mathcal{L}_{RW} f \rangle_{\pi}$$

Method 3: baseline method from [SM13]

$$\underset{f}{\operatorname{argmin}} c \| M_I(f - y) \|^2 + c \| f - W^{\operatorname{norm}} f \|^2$$

ightharpoonup Benchmark: graph of political blogs with binary label -1/1

Semi-supervised Learning

Graph Signal Reconstruction

▶ Random graph signal *y* with missing values. Objective:

$$\underset{\boldsymbol{\theta} = \{\theta_k\}}{\operatorname{argmin}} \mathbb{E}[\|f_0 - \sum_k \theta_k R^k y\|^2]$$

Results with different reference operator $R \in \{P, \bar{P}, T, \bar{T}, W^{\text{norm}}\}$

Graph Signal Reconstruction

▶ The Wandom Walk Operator P leads to a definition of the Laplacian \mathcal{L}_{RW} .

- ▶ The Wandom Walk Operator P leads to a definition of the Laplacian \mathcal{L}_{RW} .
- L_{RW} is linked with the Dirichlet energy on G which gives a definition of frequencies when applied on the eigenvectors of P.

- ▶ The Wandom Walk Operator P leads to a definition of the Laplacian \mathcal{L}_{RW} .
- L_{RW} is linked with the Dirichlet energy on G which gives a definition of frequencies when applied on the eigenvectors of P.
- ► Graph Filters can be defined by constructing polynomial sum of *P* or by linear combination of its eigenprojectors.

- ▶ The Wandom Walk Operator P leads to a definition of the Laplacian \mathcal{L}_{RW} .
- L_{RW} is linked with the Dirichlet energy on G which gives a definition of frequencies when applied on the eigenvectors of P.
- ► Graph Filters can be defined by constructing polynomial sum of *P* or by linear combination of its eigenprojectors.
- ▶ Diffusion Wavelets can be constructed via the diffusion operator T, the proposed construction framework has some limitation.

- ▶ The Wandom Walk Operator P leads to a definition of the Laplacian \mathcal{L}_{RW} .
- L_{RW} is linked with the Dirichlet energy on G which gives a definition of frequencies when applied on the eigenvectors of P.
- Graph Filters can be defined by constructing polynomial sum of P or by linear combination of its eigenprojectors.
- ▶ Diffusion Wavelets can be constructed via the diffusion operator T, the proposed construction framework has some limitation.
- Good results on graph signal reconstruction and semi-supervised learning.

- ▶ The Wandom Walk Operator P leads to a definition of the Laplacian \mathcal{L}_{RW} .
- L_{RW} is linked with the Dirichlet energy on G which gives a definition of frequencies when applied on the eigenvectors of P.
- ► Graph Filters can be defined by constructing polynomial sum of *P* or by linear combination of its eigenprojectors.
- ▶ Diffusion Wavelets can be constructed via the diffusion operator T, the proposed construction framework has some limitation.
- Good results on graph signal reconstruction and semi-supervised learning.
- ► The ergodic constraint on *P* might not be necessary, maybe irreducible is sufficient.

Aliaksei Sandryhaila and José MF Moura. "Discrete signal processing on graphs". In: *IEEE transactions on signal processing* 61.7 (2013), pp. 1644–1656.

Harry Sevi, Gabriel Rilling, and Pierre Borgnat. "Harmonic analysis on directed graphs and applications: from Fourier analysis to wavelets". In: *arXiv* preprint *arXiv*:1811.11636 (2018).