Paper summary of: Sevi, Rilling, and Borgnat "Harmonic analysis on directed graphs and applications: from Fourier analysis to wavelets", [SRB18]

Destouet, Gabriel

June 24, 2020

Graph Signal Processing on undirected graphs

Graph Signal Processing on undirected graphs

- The adjacency matrix A is real symmetric

Graph Signal Processing on undirected graphs

- The adjacency matrix A is real symmetric
- Thus Laplacians ($\left.L=D-A, L_{n}, L_{d}, \ldots\right)$ have good spectral properties

Graph Signal Processing on undirected graphs

- The adjacency matrix A is real symmetric
- Thus Laplacians ($\left.L=D-A, L_{n}, L_{d}, \ldots\right)$ have good spectral properties
- diagonalizable with orthonormal basis and eigenvalues v_{i} in \mathbb{R}^{+} and $v_{i} \leftrightarrow \omega$ frequency

Graph Signal Processing on undirected graphs

- The adjacency matrix A is real symmetric
- Thus Laplacians ($\left.L=D-A, L_{n}, L_{d}, \ldots\right)$ have good spectral properties
- diagonalizable with orthonormal basis and eigenvalues v_{i} in \mathbb{R}^{+} and $v_{i} \leftrightarrow \omega$ frequency
- Filters or wavelet H as a finite polynomial sum of a reference operator $R($ e.g $R=L$):

Graph Signal Processing on undirected graphs

- The adjacency matrix A is real symmetric
- Thus Laplacians ($\left.L=D-A, L_{n}, L_{d}, \ldots\right)$ have good spectral properties
- diagonalizable with orthonormal basis and eigenvalues v_{i} in \mathbb{R}^{+} and $v_{i} \leftrightarrow \omega$ frequency
- Filters or wavelet H as a finite polynomial sum of a reference operator R (e.g $R=L$):

$$
\begin{equation*}
H=h(L)=\sum_{k} \alpha_{k} L^{k} \tag{1}
\end{equation*}
$$

Graph Signal Processing on undirected graphs

- The adjacency matrix A is real symmetric
- Thus Laplacians ($\left.L=D-A, L_{n}, L_{d}, \ldots\right)$ have good spectral properties
- diagonalizable with orthonormal basis and eigenvalues v_{i} in \mathbb{R}^{+} and $v_{i} \leftrightarrow \omega$ frequency
- Filters or wavelet H as a finite polynomial sum of a reference operator R (e.g $R=L$):

$$
\begin{equation*}
H=h(L)=\sum_{k} \alpha_{k} L^{k} \tag{1}
\end{equation*}
$$

Filters are defined with $\left\{\alpha_{k}\right\}_{k}$, wavelets by dilation s of $h(s L)$

This paper: Graph Signal Processing on directed graphs

This paper: Graph Signal Processing on directed graphs

- The adjacency matrix A is real non symmetric

This paper: Graph Signal Processing on directed graphs

- The adjacency matrix A is real non symmetric
- "Naive" Laplacians ($\left.L=D-A, L_{n}, L_{d}, \ldots\right)$ for undirected graphs are generally not adapted

This paper: Graph Signal Processing on directed graphs

- The adjacency matrix A is real non symmetric
- "Naive" Laplacians ($L=D-A, L_{n}, L_{d}, \ldots$) for undirected graphs are generally not adapted
- if diagonalizable, eigenvalues v_{i} in \mathbb{C} and $v_{i} \leftrightarrow$?

This paper: Graph Signal Processing on directed graphs

- The adjacency matrix A is real non symmetric
- "Naive" Laplacians ($L=D-A, L_{n}, L_{d}, \ldots$) for undirected graphs are generally not adapted
- if diagonalizable, eigenvalues v_{i} in \mathbb{C} and $v_{i} \leftrightarrow$?
- In general: we are interested in operators which measure the smoothness of signals f and their spectral properties leads to Fourier-like basis.

This paper: Graph Signal Processing on directed graphs

- The adjacency matrix A is real non symmetric
- "Naive" Laplacians ($L=D-A, L_{n}, L_{d}, \ldots$) for undirected graphs are generally not adapted
- if diagonalizable, eigenvalues v_{i} in \mathbb{C} and $v_{i} \leftrightarrow$?
- In general: we are interested in operators which measure the smoothness of signals f and their spectral properties leads to Fourier-like basis.
- The questions are:

This paper: Graph Signal Processing on directed graphs

- The adjacency matrix A is real non symmetric
- "Naive" Laplacians ($L=D-A, L_{n}, L_{d}, \ldots$) for undirected graphs are generally not adapted
- if diagonalizable, eigenvalues v_{i} in \mathbb{C} and $v_{i} \leftrightarrow$?
- In general: we are interested in operators which measure the smoothness of signals f and their spectral properties leads to Fourier-like basis.
- The questions are:

1. What type of Laplacian should we use to measure the smoothness of signals on directed graphs ?

This paper: Graph Signal Processing on directed graphs

- The adjacency matrix A is real non symmetric
- "Naive" Laplacians ($L=D-A, L_{n}, L_{d}, \ldots$) for undirected graphs are generally not adapted
- if diagonalizable, eigenvalues v_{i} in \mathbb{C} and $v_{i} \leftrightarrow$?
- In general: we are interested in operators which measure the smoothness of signals f and their spectral properties leads to Fourier-like basis.
- The questions are:

1. What type of Laplacian should we use to measure the smoothness of signals on directed graphs?
2. What reference operator can we use do define filters on directed graphs?

This paper: Graph Signal Processing on directed graphs

- The adjacency matrix A is real non symmetric
- "Naive" Laplacians ($L=D-A, L_{n}, L_{d}, \ldots$) for undirected graphs are generally not adapted
- if diagonalizable, eigenvalues v_{i} in \mathbb{C} and $v_{i} \leftrightarrow$?
- In general: we are interested in operators which measure the smoothness of signals f and their spectral properties leads to Fourier-like basis.
- The questions are:

1. What type of Laplacian should we use to measure the smoothness of signals on directed graphs ?
2. What reference operator can we use do define filters on directed graphs?

- The authors of [SRB18] propose to use the random walk operator on directed graphs:

This paper: Graph Signal Processing on directed graphs

- The adjacency matrix A is real non symmetric
- "Naive" Laplacians ($L=D-A, L_{n}, L_{d}, \ldots$) for undirected graphs are generally not adapted
- if diagonalizable, eigenvalues v_{i} in \mathbb{C} and $v_{i} \leftrightarrow$?
- In general: we are interested in operators which measure the smoothness of signals f and their spectral properties leads to Fourier-like basis.
- The questions are:

1. What type of Laplacian should we use to measure the smoothness of signals on directed graphs ?
2. What reference operator can we use do define filters on directed graphs ?

- The authors of [SRB18] propose to use the random walk operator on directed graphs:
- It gives a Laplacian for directed graphs

This paper: Graph Signal Processing on directed graphs

- The adjacency matrix A is real non symmetric
- "Naive" Laplacians ($L=D-A, L_{n}, L_{d}, \ldots$) for undirected graphs are generally not adapted
- if diagonalizable, eigenvalues v_{i} in \mathbb{C} and $v_{i} \leftrightarrow$?
- In general: we are interested in operators which measure the smoothness of signals f and their spectral properties leads to Fourier-like basis.
- The questions are:

1. What type of Laplacian should we use to measure the smoothness of signals on directed graphs ?
2. What reference operator can we use do define filters on directed graphs?

- The authors of [SRB18] propose to use the random walk operator on directed graphs:
- It gives a Laplacian for directed graphs
- and leads to a frequency interpretation of the spectral properties of A

From Adjacent Matrix to Random Walk Operator

From Adjacent Matrix to Random Walk Operator
Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

From Adjacent Matrix to Random Walk Operator
Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$
\begin{equation*}
P=D^{-1} W \tag{2}
\end{equation*}
$$

Where D^{-1} is the diagonal matrix of out-degrees of W,
$D_{i, i}=\sum w_{i, j}$

From Adjacent Matrix to Random Walk Operator
Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$
\begin{equation*}
P=D^{-1} W \tag{2}
\end{equation*}
$$

Where D^{-1} is the diagonal matrix of out-degrees of W, $D_{i, i}=\sum w_{i, j}$

- P is the transition matrix of the Markov Chain defined on \mathcal{G}

From Adjacent Matrix to Random Walk Operator
Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$
\begin{equation*}
P=D^{-1} W \tag{2}
\end{equation*}
$$

Where D^{-1} is the diagonal matrix of out-degrees of W, $D_{i, i}=\sum w_{i, j}$

- P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$
\begin{equation*}
p(x, y)=P_{x, y}=\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right) \tag{3}
\end{equation*}
$$

From Adjacent Matrix to Random Walk Operator
Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$
\begin{equation*}
P=D^{-1} W \tag{2}
\end{equation*}
$$

Where D^{-1} is the diagonal matrix of out-degrees of W,
$D_{i, i}=\sum w_{i, j}$

- P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$
\begin{equation*}
p(x, y)=P_{x, y}=\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right) \tag{3}
\end{equation*}
$$

Operations with the Random Walk Operator

From Adjacent Matrix to Random Walk Operator
Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$
\begin{equation*}
P=D^{-1} W \tag{2}
\end{equation*}
$$

Where D^{-1} is the diagonal matrix of out-degrees of W,
$D_{i, i}=\sum w_{i, j}$

- P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$
\begin{equation*}
p(x, y)=P_{x, y}=\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right) \tag{3}
\end{equation*}
$$

Operations with the Random Walk Operator Left and right operations of P :

From Adjacent Matrix to Random Walk Operator
Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$
\begin{equation*}
P=D^{-1} W \tag{2}
\end{equation*}
$$

Where D^{-1} is the diagonal matrix of out-degrees of W,
$D_{i, i}=\sum w_{i, j}$

- P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$
\begin{equation*}
p(x, y)=P_{x, y}=\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right) \tag{3}
\end{equation*}
$$

Operations with the Random Walk Operator Left and right operations of P :

From Adjacent Matrix to Random Walk Operator
Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$
\begin{equation*}
P=D^{-1} W \tag{2}
\end{equation*}
$$

Where D^{-1} is the diagonal matrix of out-degrees of W,
$D_{i, i}=\sum w_{i, j}$

- P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$
\begin{equation*}
p(x, y)=P_{x, y}=\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right) \tag{3}
\end{equation*}
$$

Operations with the Random Walk Operator
Left and right operations of P :

$$
\begin{equation*}
\operatorname{Pf}(x)=\sum p(x, y) f(y)=\underbrace{\mathbb{E}_{\mathbb{P}_{Y \mid X}}[f]} \tag{4}
\end{equation*}
$$

mass averaged and propagated back to child node x

From Adjacent Matrix to Random Walk Operator
Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, W)$, the Random Walk Operator is

$$
\begin{equation*}
P=D^{-1} W \tag{2}
\end{equation*}
$$

Where D^{-1} is the diagonal matrix of out-degrees of W,
$D_{i, i}=\sum w_{i, j}$

- P is the transition matrix of the Markov Chain defined on \mathcal{G}

$$
\begin{equation*}
p(x, y)=P_{x, y}=\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right) \tag{3}
\end{equation*}
$$

Operations with the Random Walk Operator

 Left and right operations of P :$$
\begin{align*}
& P f(x)=\sum_{\text {mass averaged an }} p(x, y) f(y) \tag{4}\\
& \pi P(y)=\sum \pi(x) p(x, y)
\end{align*}
$$

Some properties of the Random Walk Operator

- It is irreducible if:

$$
\begin{equation*}
\forall x, y \in \mathcal{V}, \exists m<\infty: \mathbb{P}\left(X_{n+m}=y \mid x_{n}=x\right)>0 \tag{6}
\end{equation*}
$$

This is equivalent to say that \mathcal{G} is strongly connected.

Some properties of the Random Walk Operator

- It is irreducible if:

$$
\begin{equation*}
\forall x, y \in \mathcal{V}, \exists m<\infty: \mathbb{P}\left(X_{n+m}=y \mid x_{n}=x\right)>0 \tag{6}
\end{equation*}
$$

This is equivalent to say that \mathcal{G} is strongly connected.

- aperiodic if :

$$
\begin{equation*}
\forall x \in \mathcal{V}, \operatorname{gcd}\left\{n \in \mathbb{N}^{+}: \mathbb{P}\left(X_{m+n}=x \mid X_{m}=x\right)>0\right\}=1 \tag{7}
\end{equation*}
$$

Some properties of the Random Walk Operator

- It is irreducible if:

$$
\begin{equation*}
\forall x, y \in \mathcal{V}, \exists m<\infty: \mathbb{P}\left(X_{n+m}=y \mid x_{n}=x\right)>0 \tag{6}
\end{equation*}
$$

This is equivalent to say that \mathcal{G} is strongly connected.

- aperiodic if :

$$
\begin{equation*}
\forall x \in \mathcal{V}, \operatorname{gcd}\left\{n \in \mathbb{N}^{+}: \mathbb{P}\left(X_{m+n}=x \mid X_{m}=x\right)>0\right\}=1 \tag{7}
\end{equation*}
$$

- ergodic if aperiodic and irreducible

Some properties of the Random Walk Operator

- It is irreducible if:

$$
\begin{equation*}
\forall x, y \in \mathcal{V}, \exists m<\infty: \mathbb{P}\left(X_{n+m}=y \mid x_{n}=x\right)>0 \tag{6}
\end{equation*}
$$

This is equivalent to say that \mathcal{G} is strongly connected.

- aperiodic if :

$$
\begin{equation*}
\forall x \in \mathcal{V}, \operatorname{gcd}\left\{n \in \mathbb{N}^{+}: \mathbb{P}\left(X_{m+n}=x \mid X_{m}=x\right)>0\right\}=1 \tag{7}
\end{equation*}
$$

- ergodic if aperiodic and irreducible
- reversible if $P^{*}=P$, where

$$
\begin{equation*}
P_{x, y}^{*}=p^{*}(x, y)=\mathbb{P}\left(X_{n}=y \mid X_{n+1}=x\right) \tag{8}
\end{equation*}
$$

Some properties of the Random Walk Operator

- It is irreducible if:

$$
\begin{equation*}
\forall x, y \in \mathcal{V}, \exists m<\infty: \mathbb{P}\left(X_{n+m}=y \mid x_{n}=x\right)>0 \tag{6}
\end{equation*}
$$

This is equivalent to say that \mathcal{G} is strongly connected.

- aperiodic if :

$$
\begin{equation*}
\forall x \in \mathcal{V}, \operatorname{gcd}\left\{n \in \mathbb{N}^{+}: \mathbb{P}\left(X_{m+n}=x \mid X_{m}=x\right)>0\right\}=1 \tag{7}
\end{equation*}
$$

- ergodic if aperiodic and irreducible
- reversible if $P^{*}=P$, where

$$
\begin{equation*}
P_{x, y}^{*}=p^{*}(x, y)=\mathbb{P}\left(X_{n}=y \mid X_{n+1}=x\right) \tag{8}
\end{equation*}
$$

- If P is ergodic, P has a single eigenvalue $\lambda_{\text {max }}=1$ and $\{\forall \lambda \neq 1,|\lambda|<1\}$ (Perron-Frobenius Theorem) ${ }^{1}$

Some properties of the Random Walk Operator

- It is irreducible if:

$$
\begin{equation*}
\forall x, y \in \mathcal{V}, \exists m<\infty: \mathbb{P}\left(X_{n+m}=y \mid x_{n}=x\right)>0 \tag{6}
\end{equation*}
$$

This is equivalent to say that \mathcal{G} is strongly connected.

- aperiodic if :

$$
\begin{equation*}
\forall x \in \mathcal{V}, \operatorname{gcd}\left\{n \in \mathbb{N}^{+}: \mathbb{P}\left(X_{m+n}=x \mid X_{m}=x\right)>0\right\}=1 \tag{7}
\end{equation*}
$$

- ergodic if aperiodic and irreducible
- reversible if $P^{*}=P$, where

$$
\begin{equation*}
P_{x, y}^{*}=p^{*}(x, y)=\mathbb{P}\left(X_{n}=y \mid X_{n+1}=x\right) \tag{8}
\end{equation*}
$$

- If P is ergodic, P has a single eigenvalue $\lambda_{\text {max }}=1$ and $\{\forall \lambda \neq 1,|\lambda|<1\}$ (Perron-Frobenius Theorem) ${ }^{1}$

[^0]Relation between P and P^{*}
In [SRB18] they require that P is ergodic to have

$$
\begin{align*}
& p^{*}(x, y)=\frac{\pi(y)}{\pi(x)} p(y, x) \tag{9}\\
\Leftrightarrow & P^{*}=\Pi^{-1} P^{T} \Pi \tag{10}
\end{align*}
$$

Where $\Pi=\operatorname{diag}\left(\pi\left(v_{1}\right), \ldots, \pi\left(v_{N}\right)\right), v_{i} \in \mathcal{V}$

Relation between P and P^{*}

In [SRB18] they require that P is ergodic to have

$$
\begin{align*}
& p^{*}(x, y)=\frac{\pi(y)}{\pi(x)} p(y, x) \tag{9}\\
\Leftrightarrow & P^{*}=\Pi^{-1} P^{T} \Pi \tag{10}
\end{align*}
$$

Where $\Pi=\operatorname{diag}\left(\pi\left(v_{1}\right), \ldots, \pi\left(v_{N}\right)\right), v_{i} \in \mathcal{V}$

- But eq. (10) can be obtained by applying the Bayes's rule for general P

Relation between P and P^{*}

In [SRB18] they require that P is ergodic to have

$$
\begin{align*}
& p^{*}(x, y)=\frac{\pi(y)}{\pi(x)} p(y, x) \tag{9}\\
\Leftrightarrow & P^{*}=\Pi^{-1} P^{T} \Pi \tag{10}
\end{align*}
$$

Where $\Pi=\operatorname{diag}\left(\pi\left(v_{1}\right), \ldots, \pi\left(v_{N}\right)\right), v_{i} \in \mathcal{V}$

- But eq. (10) can be obtained by applying the Bayes's rule for general P
- Maybe the authors of [SRB18] need ergodicity to estimate π via power iteration method or MCMC methods since:

$$
\begin{equation*}
P^{n}(x, .) \underset{n \rightarrow \infty}{\longrightarrow} \pi(x) \tag{11}
\end{equation*}
$$

When P is ergodic.

Relation between P and P^{*}

In [SRB18] they require that P is ergodic to have

$$
\begin{align*}
& p^{*}(x, y)=\frac{\pi(y)}{\pi(x)} p(y, x) \tag{9}\\
\Leftrightarrow & P^{*}=\Pi^{-1} P^{T} \Pi \tag{10}
\end{align*}
$$

Where $\Pi=\operatorname{diag}\left(\pi\left(v_{1}\right), \ldots, \pi\left(v_{N}\right)\right), v_{i} \in \mathcal{V}$

- But eq. (10) can be obtained by applying the Bayes's rule for general P
- Maybe the authors of [SRB18] need ergodicity to estimate π via power iteration method or MCMC methods since:

$$
\begin{equation*}
P^{n}(x, .) \underset{n \rightarrow \infty}{\longrightarrow} \pi(x) \tag{11}
\end{equation*}
$$

When P is ergodic.

- Actually, π can also be estimated if P is only irreducible, see [Mey00, Chap.8]

Two transformations of P
With P irreducible

- To make P aperiodic (and thus ergodic)

$$
\begin{equation*}
\tilde{\mathcal{P}}=\left\{\tilde{P}_{\gamma}: \tilde{P}_{\gamma}=(1-\gamma) P+\gamma \mathrm{I} \mid \gamma \in[0,1]\right\} \tag{12}
\end{equation*}
$$

\tilde{P} has the same eigenspace than P but is aperiodic

Two transformations of P
With P irreducible

- To make P aperiodic (and thus ergodic)

$$
\begin{equation*}
\tilde{\mathcal{P}}=\left\{\tilde{P}_{\gamma}: \tilde{P}_{\gamma}=(1-\gamma) P+\gamma \mathrm{I} \mid \gamma \in[0,1]\right\} \tag{12}
\end{equation*}
$$

\tilde{P} has the same eigenspace than P but is aperiodic

- Set of convex combination of P and P^{*}

$$
\begin{equation*}
\overline{\mathcal{P}}=\left\{\bar{P}_{\alpha}: \bar{P}_{\alpha}=(1-\alpha) P+\alpha P^{*} \mid \alpha \in[0,1]\right\} \tag{13}
\end{equation*}
$$

Only $\bar{P}_{1 / 2}=\bar{P}$ is reversible.

Two function spaces

- On \mathcal{G}, space of graph signals $f, g \in \ell^{2}(\mathcal{V})$ with

$$
\langle f, g\rangle=\sum_{x \in \mathcal{V}} f(x) \bar{g}(x)
$$

Two function spaces

- On \mathcal{G}, space of graph signals $f, g \in \ell^{2}(\mathcal{V})$ with

$$
\langle f, g\rangle=\sum_{x \in \mathcal{V}} f(x) \bar{g}(x)
$$

- On \mathcal{G} with π, space of graph signals $f, g \in \ell^{2}(\mathcal{V}, \pi)$ with

$$
\langle f, g\rangle_{\pi}=\sum_{x \in \mathcal{V}} f(x) \bar{g}(x) \pi(x)
$$

Two function spaces

- On \mathcal{G}, space of graph signals $f, g \in \ell^{2}(\mathcal{V})$ with

$$
\langle f, g\rangle=\sum_{x \in \mathcal{V}} f(x) \bar{g}(x)
$$

- On \mathcal{G} with π, space of graph signals $f, g \in \ell^{2}(\mathcal{V}, \pi)$ with

$$
\langle f, g\rangle_{\pi}=\sum_{x \in \mathcal{V}} f(x) \bar{g}(x) \pi(x)
$$

- We have an isometry ψ between $\ell^{2}(\mathcal{V})$ and $\ell^{2}(\mathcal{V}, \pi)$

$$
\forall f \in \ell^{2}(\mathcal{V}), \quad \psi: f \mapsto \Pi^{-1 / 2} f
$$

Two function spaces

- On \mathcal{G}, space of graph signals $f, g \in \ell^{2}(\mathcal{V})$ with

$$
\langle f, g\rangle=\sum_{x \in \mathcal{V}} f(x) \bar{g}(x)
$$

- On \mathcal{G} with π, space of graph signals $f, g \in \ell^{2}(\mathcal{V}, \pi)$ with

$$
\langle f, g\rangle_{\pi}=\sum_{x \in \mathcal{V}} f(x) \bar{g}(x) \pi(x)
$$

- We have an isometry ψ between $\ell^{2}(\mathcal{V})$ and $\ell^{2}(\mathcal{V}, \pi)$

$$
\forall f \in \ell^{2}(\mathcal{V}), \quad \psi: f \mapsto \Pi^{-1 / 2} f
$$

- In particular, P and P^{*} are adjoint in $\ell^{2}(\mathcal{V}, \pi)$:

$$
\begin{equation*}
\langle f, P g\rangle_{\pi}=\left\langle P^{*} f, g\right\rangle_{\pi} \tag{14}
\end{equation*}
$$

Two function spaces

- On \mathcal{G}, space of graph signals $f, g \in \ell^{2}(\mathcal{V})$ with

$$
\langle f, g\rangle=\sum_{x \in \mathcal{V}} f(x) \bar{g}(x)
$$

- On \mathcal{G} with π, space of graph signals $f, g \in \ell^{2}(\mathcal{V}, \pi)$ with

$$
\langle f, g\rangle_{\pi}=\sum_{x \in \mathcal{V}} f(x) \bar{g}(x) \pi(x)
$$

- We have an isometry ψ between $\ell^{2}(\mathcal{V})$ and $\ell^{2}(\mathcal{V}, \pi)$

$$
\forall f \in \ell^{2}(\mathcal{V}), \quad \psi: f \mapsto \Pi^{-1 / 2} f
$$

- In particular, P and P^{*} are adjoint in $\ell^{2}(\mathcal{V}, \pi)$:

$$
\begin{equation*}
\langle f, P g\rangle_{\pi}=\left\langle P^{*} f, g\right\rangle_{\pi} \tag{14}
\end{equation*}
$$

- \bar{P} is self adjoint and thus has an orthonormal eigenbasis.

Laplacian for directed graphs in $\ell^{2}(\mathcal{V})$ and $\ell^{2}(\mathcal{V}, \pi)$

Laplacian for directed graphs in $\ell^{2}(\mathcal{V})$ and $\ell^{2}(\mathcal{V}, \pi)$

- First introduce T

$$
T=\Pi^{1 / 2} P \Pi^{-1 / 2}
$$

Which is equivalent to $\psi^{-1} P \psi$

Laplacian for directed graphs in $\ell^{2}(\mathcal{V})$ and $\ell^{2}(\mathcal{V}, \pi)$

- First introduce T

$$
T=\Pi^{1 / 2} P \Pi^{-1 / 2}
$$

Which is equivalent to $\psi^{-1} P \psi$

- Let \mathcal{L} in $\ell^{2}(\mathcal{V})$

$$
\begin{equation*}
\mathcal{L}=\mathrm{I}-\frac{T+T^{T}}{2} \tag{15}
\end{equation*}
$$

Laplacian for directed graphs in $\ell^{2}(\mathcal{V})$ and $\ell^{2}(\mathcal{V}, \pi)$

- First introduce T

$$
T=\Pi^{1 / 2} P \Pi^{-1 / 2}
$$

Which is equivalent to $\psi^{-1} P \psi$

- Let \mathcal{L} in $\ell^{2}(\mathcal{V})$

$$
\begin{equation*}
\mathcal{L}=\mathrm{I}-\frac{T+T^{T}}{2} \tag{15}
\end{equation*}
$$

- Let $\mathcal{L}_{R W}$ in $\ell^{2}(\mathcal{V}, \pi)$

$$
\begin{equation*}
\mathcal{L}_{R W}=\mathrm{I}-\bar{P} \tag{16}
\end{equation*}
$$

Laplacian for directed graphs in $\ell^{2}(\mathcal{V})$ and $\ell^{2}(\mathcal{V}, \pi)$

- First introduce T

$$
T=\Pi^{1 / 2} P \Pi^{-1 / 2}
$$

Which is equivalent to $\psi^{-1} P \psi$

- Let \mathcal{L} in $\ell^{2}(\mathcal{V})$

$$
\begin{equation*}
\mathcal{L}=\mathrm{I}-\frac{T+T^{T}}{2} \tag{15}
\end{equation*}
$$

- Let $\mathcal{L}_{R W}$ in $\ell^{2}(\mathcal{V}, \pi)$

$$
\begin{equation*}
\mathcal{L}_{R W}=\mathrm{I}-\bar{P} \tag{16}
\end{equation*}
$$

$\mathcal{L}=\psi^{-1} \mathcal{L}_{R W} \psi . \mathcal{L}_{R W}$ and \bar{P} have the same (orthonormal) eigenspace.

The Dirichlet energy and its link with $\mathcal{L}_{R W}$

The Dirichlet energy and its link with $\mathcal{L}_{R W}$

- Dirichlet energy of a graph signal $f \in \ell^{2}(\mathcal{V}, \pi)$ on P

The Dirichlet energy and its link with $\mathcal{L}_{R W}$

- Dirichlet energy of a graph signal $f \in \ell^{2}(\mathcal{V}, \pi)$ on P

$$
\begin{equation*}
\mathcal{D}_{\pi, P}^{2}(f)=\frac{1}{2} \sum_{(x, y) \in \mathcal{E}} \pi(x) p(x, y)|f(x)-f(y)|^{2} \tag{17}
\end{equation*}
$$

The Dirichlet energy and its link with $\mathcal{L}_{R W}$

- Dirichlet energy of a graph signal $f \in \ell^{2}(\mathcal{V}, \pi)$ on P

$$
\begin{align*}
\mathcal{D}_{\pi, P}^{2}(f) & =\frac{1}{2} \sum_{(x, y) \in \mathcal{E}} \pi(x) p(x, y)|f(x)-f(y)|^{2} \tag{17}\\
& =\left\langle f, \mathcal{L}_{R W} f\right\rangle_{\pi} \tag{18}
\end{align*}
$$

The Dirichlet energy and its link with $\mathcal{L}_{R W}$

- Dirichlet energy of a graph signal $f \in \ell^{2}(\mathcal{V}, \pi)$ on P

$$
\begin{align*}
\mathcal{D}_{\pi, P}^{2}(f) & =\frac{1}{2} \sum_{(x, y) \in \mathcal{E}} \pi(x) p(x, y)|f(x)-f(y)|^{2} \tag{17}\\
& =\left\langle f, \mathcal{L}_{R W} f\right\rangle_{\pi} \tag{18}\\
\mathcal{R}_{\pi, P}(f) & =\frac{\mathcal{D}_{\pi, P}^{2} f}{\|f\|_{\pi}^{2}} \tag{19}
\end{align*}
$$

Where $\mathcal{R}_{\pi, P}$ is the Rayleigh quotient.

The Dirichlet energy and its link with $\mathcal{L}_{R W}$

- Dirichlet energy of a graph signal $f \in \ell^{2}(\mathcal{V}, \pi)$ on P

$$
\begin{align*}
\mathcal{D}_{\pi, P}^{2}(f) & =\frac{1}{2} \sum_{(x, y) \in \mathcal{E}} \pi(x) p(x, y)|f(x)-f(y)|^{2} \tag{17}\\
& =\left\langle f, \mathcal{L}_{R W} f\right\rangle_{\pi} \tag{18}\\
\mathcal{R}_{\pi, P}(f) & =\frac{\mathcal{D}_{\pi, P}^{2} f}{\|f\|_{\pi}^{2}} \tag{19}
\end{align*}
$$

Where $\mathcal{R}_{\pi, P}$ is the Rayleigh quotient.

- For any eigenvectors ξ of P with eigenvalue ν.

$$
\begin{equation*}
\mathcal{R}_{\pi, P}(\xi)=1-\Re(\nu) \tag{20}
\end{equation*}
$$

The Dirichlet energy and its link with $\mathcal{L}_{R W}$

- Dirichlet energy of a graph signal $f \in \ell^{2}(\mathcal{V}, \pi)$ on P

$$
\begin{align*}
\mathcal{D}_{\pi, P}^{2}(f) & =\frac{1}{2} \sum_{(x, y) \in \mathcal{E}} \pi(x) p(x, y)|f(x)-f(y)|^{2} \tag{17}\\
& =\left\langle f, \mathcal{L}_{R W} f\right\rangle_{\pi} \tag{18}\\
\mathcal{R}_{\pi, P}(f) & =\frac{\mathcal{D}_{\pi, P}^{2} f}{\|f\|_{\pi}^{2}} \tag{19}
\end{align*}
$$

Where $\mathcal{R}_{\pi, P}$ is the Rayleigh quotient.

- For any eigenvectors ξ of P with eigenvalue ν.

$$
\begin{equation*}
\mathcal{R}_{\pi, P}(\xi)=1-\Re(\nu) \tag{20}
\end{equation*}
$$

For each (ξ, ν) of P we are able to associate a frequency $\omega=1-\Re(\nu) \in[0,2]$

Fourier Analysis on finite groups

- Example of the classical circulant matrix where $P=C_{N}$

$$
C_{N}=\left(\begin{array}{ccccc}
0 & 1 & \cdots & \cdots & 0 \\
\vdots & 0 & 1 & \cdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & & \ddots & 1 \\
1 & 0 & \cdots & \cdots & 0
\end{array}\right)
$$

Fourier Analysis on finite groups

- Example of the classical circulant matrix where $P=C_{N}$
- The authors [SRB18] consider a transformation \tilde{P}_{γ} of P in order to have an irreducible and aperiodic (ergodic) operator and find:

$$
\mathcal{R}_{\pi, P}\left(\xi_{k}\right)=(1-\gamma)\left(1-\cos \left(\frac{2 \pi(k-1)}{N}\right)\right)=\omega_{k}
$$

Fourier Analysis on finite groups

- Example of the classical circulant matrix where $P=C_{N}$
- The authors [SRB18] consider a transformation \tilde{P}_{γ} of P in order to have an irreducible and aperiodic (ergodic) operator and find:

$$
\mathcal{R}_{\pi, P}\left(\xi_{k}\right)=(1-\gamma)\left(1-\cos \left(\frac{2 \pi(k-1)}{N}\right)\right)=\omega_{k}
$$

- By ordering the frequencies with the eigenvectors, we retrieve the classical results of signal processing

Fourier Analysis on finite groups

- Example of the classical circulant matrix where $P=C_{N}$
- The authors [SRB18] consider a transformation \tilde{P}_{γ} of P in order to have an irreducible and aperiodic (ergodic) operator and find:

$$
\mathcal{R}_{\pi, P}\left(\xi_{k}\right)=(1-\gamma)\left(1-\cos \left(\frac{2 \pi(k-1)}{N}\right)\right)=\omega_{k}
$$

- By ordering the frequencies with the eigenvectors, we retrieve the classical results of signal processing
- By taking the limit $\gamma \rightarrow 0$, they could also define frequency for P

Fourier Analysis on finite groups

- Example of the classical circulant matrix where $P=C_{N}$
- The authors [SRB18] consider a transformation \tilde{P}_{γ} of P in order to have an irreducible and aperiodic (ergodic) operator and find:

$$
\mathcal{R}_{\pi, P}\left(\xi_{k}\right)=(1-\gamma)\left(1-\cos \left(\frac{2 \pi(k-1)}{N}\right)\right)=\omega_{k}
$$

- By ordering the frequencies with the eigenvectors, we retrieve the classical results of signal processing
- By taking the limit $\gamma \rightarrow 0$, they could also define frequency for P (do we need P ergodic ?)

Fourier Analysis on finite groups

- Example of the classical circulant matrix where $P=C_{N}$
- The authors [SRB18] consider a transformation \tilde{P}_{γ} of P in order to have an irreducible and aperiodic (ergodic) operator and find:

$$
\mathcal{R}_{\pi, P}\left(\xi_{k}\right)=(1-\gamma)\left(1-\cos \left(\frac{2 \pi(k-1)}{N}\right)\right)=\omega_{k}
$$

- By ordering the frequencies with the eigenvectors, we retrieve the classical results of signal processing
- By taking the limit $\gamma \rightarrow 0$, they could also define frequency for P (do we need P ergodic ?)
- Extension to the case of toroidal graph $\mathcal{T}_{m, n}=\mathcal{C}_{m} \square \mathcal{C}_{n}$ where $\mathcal{C}_{m}, \mathcal{C}_{n}$ are directed cycle graphs.

Graph filters with the Random Walk Operator
As a reference operator, choose $R=P$

Graph filters with the Random Walk Operator
As a reference operator, choose $R=P$

- Graph Filter H as a polynomial sum of P

$$
H=\sum_{k} \theta_{k} P^{k}
$$

Graph filters with the Random Walk Operator

As a reference operator, choose $R=P$

- Graph Filter H as a linear combination of spectral projectors $\mathbf{E}_{\nu_{k}}$ associated with eigenvalues ν_{k}

$$
\begin{align*}
\boldsymbol{H}_{\omega} & =\sum_{k} \gamma_{k} \mathbf{E}_{\nu_{k}} \tag{21}\\
& =\sum_{\omega \in \omega} \tau_{\omega} S_{\omega} \tag{22}
\end{align*}
$$

Where

$$
S_{\omega}=\sum_{1} \mathbf{E}_{\nu}
$$

By defining $h: \boldsymbol{\omega} \rightarrow \mathbb{R}(\mathbb{C})$, we have the graph filter with frequency response

$$
H=\sum_{\omega \in \omega} h(\omega) S_{\omega}
$$

Multiresolution analysis on directed graph

- Bank of synthesis \mathcal{K} and analysis $\tilde{\mathcal{K}}$ defined as:

$$
\begin{align*}
\mathcal{K} & =\left\{H_{t_{t}}, G_{t_{1}}, \ldots, G_{t_{j}}\right\} \tag{23}\\
\tilde{\mathcal{K}} & =\left\{\tilde{H}_{t_{J}}, \tilde{G}_{t_{1}}, \ldots, \tilde{G}_{t_{j}}\right\} \tag{24}
\end{align*}
$$

Where

$$
\begin{align*}
H_{t} & =\sum_{k} h\left(t \omega_{k}\right) S_{k} \text { where } h \text { is a low pass } \tag{25}\\
G_{t} & =\sum_{k} g\left(t \omega_{k}\right) S_{k} \text { where } g \text { is a high pass } \tag{26}
\end{align*}
$$

With S_{k} the random walk spectral projectors previously defined associated to mono-frequencies ω_{k}

- Wavelets: $h_{t_{j}, k}=H_{t} \delta_{k}$ and $g_{t_{j}, k}=G_{t_{j}} \delta_{k}$

Critically sampled wavelets

- Use the diffusion operator $T=\Pi^{1 / 2} P \Pi^{-1 / 2}$ to find the bases (scaling functions) $\left\{\Phi_{j}\right\}_{1 \leq j \leq J}$ of nested spaces $\left\{V_{j}\right\}_{1 \leq j \leq J}, V_{J} \subset V_{J-1} \cdots \subset V_{0}$

Critically sampled wavelets

- Use the diffusion operator $T=\Pi^{1 / 2} P \Pi^{-1 / 2}$ to find the bases (scaling functions) $\left\{\Phi_{j}\right\}_{1 \leq j \leq J}$ of nested spaces $\left\{V_{j}\right\}_{1 \leq j \leq J}, V_{J} \subset V_{J-1} \cdots \subset V_{0}$
- Sketch of the algorithm:

Critically sampled wavelets

- Use the diffusion operator $T=\Pi^{1 / 2} P \Pi^{-1 / 2}$ to find the bases (scaling functions) $\left\{\Phi_{j}\right\}_{1 \leq j \leq J}$ of nested spaces $\left\{V_{j}\right\}_{1 \leq j \leq J}, V_{J} \subset V_{J-1} \cdots \subset V_{0}$
- Sketch of the algorithm:

1. Start with : $\Phi_{0}=\left\{\delta_{k}\right\}_{k}, p=2^{0}$

Critically sampled wavelets

- Use the diffusion operator $T=\Pi^{1 / 2} P \Pi^{-1 / 2}$ to find the bases (scaling functions) $\left\{\Phi_{j}\right\}_{1 \leq j \leq J}$ of nested spaces $\left\{V_{j}\right\}_{1 \leq j \leq J}, V_{J} \subset V_{J-1} \cdots \subset V_{0}$
- Sketch of the algorithm:

1. Start with : $\Phi_{0}=\left\{\delta_{k}\right\}_{k}, p=2^{0}$
2. Compute $\tilde{\Phi}_{1}=T^{p} \Phi_{0}$

Critically sampled wavelets

- Use the diffusion operator $T=\Pi^{1 / 2} P \Pi^{-1 / 2}$ to find the bases (scaling functions) $\left\{\Phi_{j}\right\}_{1 \leq j \leq J}$ of nested spaces $\left\{V_{j}\right\}_{1 \leq j \leq J}, V_{J} \subset V_{J-1} \cdots \subset V_{0}$
- Sketch of the algorithm:

1. Start with: $\Phi_{0}=\left\{\delta_{k}\right\}_{k}, p=2^{0}$
2. Compute $\tilde{\Phi}_{1}=T^{P} \Phi_{0}$
3. Prune $\tilde{\Phi}_{1}$ to obtain Φ_{1} such that $\left\|\tilde{\Phi}_{1}-\Phi_{1}\right\|_{F}$ is minimal

Critically sampled wavelets

- Use the diffusion operator $T=\Pi^{1 / 2} P \Pi^{-1 / 2}$ to find the bases (scaling functions) $\left\{\Phi_{j}\right\}_{1 \leq j \leq J}$ of nested spaces $\left\{V_{j}\right\}_{1 \leq j \leq J}, V_{J} \subset V_{J-1} \cdots \subset V_{0}$
- Sketch of the algorithm:

1. Start with: $\Phi_{0}=\left\{\delta_{k}\right\}_{k}, p=2^{0}$
2. Compute $\tilde{\Phi}_{1}=T^{P} \Phi_{0}$
3. Prune $\tilde{\Phi}_{1}$ to obtain Φ_{1} such that $\left\|\tilde{\Phi}_{1}-\Phi_{1}\right\|_{F}$ is minimal
4. Update $p \leftarrow 2 * p$

Critically sampled wavelets

- Use the diffusion operator $T=\Pi^{1 / 2} P \Pi^{-1 / 2}$ to find the bases (scaling functions) $\left\{\Phi_{j}\right\}_{1 \leq j \leq J}$ of nested spaces $\left\{V_{j}\right\}_{1 \leq j \leq J}, V_{J} \subset V_{J-1} \cdots \subset V_{0}$
- Sketch of the algorithm:

1. Start with: $\Phi_{0}=\left\{\delta_{k}\right\}_{k}, p=2^{0}$
2. Compute $\tilde{\Phi}_{1}=T^{p} \Phi_{0}$
3. Prune $\tilde{\Phi}_{1}$ to obtain Φ_{1} such that $\left\|\tilde{\Phi}_{1}-\Phi_{1}\right\|_{F}$ is minimal
4. Update $p \leftarrow 2 * p$
5. Compute $\tilde{\Phi}_{2}=T^{p} \Phi_{1}$

Critically sampled wavelets

- Use the diffusion operator $T=\Pi^{1 / 2} P \Pi^{-1 / 2}$ to find the bases (scaling functions) $\left\{\Phi_{j}\right\}_{1 \leq j \leq J}$ of nested spaces $\left\{V_{j}\right\}_{1 \leq j \leq J}, V_{J} \subset V_{J-1} \cdots \subset V_{0}$
- Sketch of the algorithm:

1. Start with : $\Phi_{0}=\left\{\delta_{k}\right\}_{k}, p=2^{0}$
2. Compute $\tilde{\Phi}_{1}=T^{\rho} \Phi_{0}$
3. Prune $\tilde{\Phi}_{1}$ to obtain Φ_{1} such that $\left\|\tilde{\Phi}_{1}-\Phi_{1}\right\|_{F}$ is minimal
4. Update $p \leftarrow 2 * p$
5. Compute $\tilde{\Phi}_{2}=T^{p} \Phi_{1}$
6. Prune $\tilde{\Phi}_{2}$ to obtain Φ_{2} such that $\left\|\tilde{\Phi}_{2}-\Phi_{2}\right\|_{F}$ is minimal

Critically sampled wavelets

- Use the diffusion operator $T=\Pi^{1 / 2} P \Pi^{-1 / 2}$ to find the bases (scaling functions) $\left\{\Phi_{j}\right\}_{1 \leq j \leq J}$ of nested spaces $\left\{V_{j}\right\}_{1 \leq j \leq J}, V_{J} \subset V_{J-1} \cdots \subset V_{0}$
- Sketch of the algorithm:

1. Start with : $\Phi_{0}=\left\{\delta_{k}\right\}_{k}, p=2^{0}$
2. Compute $\tilde{\Phi}_{1}=T^{\rho} \Phi_{0}$
3. Prune $\tilde{\Phi}_{1}$ to obtain Φ_{1} such that $\left\|\tilde{\Phi}_{1}-\Phi_{1}\right\|_{F}$ is minimal
4. Update $p \leftarrow 2 * p$
5. Compute $\tilde{\Phi}_{2}=T^{p} \Phi_{1}$
6. Prune $\tilde{\Phi}_{2}$ to obtain Φ_{2} such that $\left\|\tilde{\Phi}_{2}-\Phi_{2}\right\|_{F}$ is minimal

Critically sampled wavelets

- Use the diffusion operator $T=\Pi^{1 / 2} P \Pi^{-1 / 2}$ to find the bases (scaling functions) $\left\{\Phi_{j}\right\}_{1 \leq j \leq J}$ of nested spaces $\left\{V_{j}\right\}_{1 \leq j \leq J}, V_{J} \subset V_{J-1} \cdots \subset V_{0}$
- Sketch of the algorithm:

1. Start with: $\Phi_{0}=\left\{\delta_{k}\right\}_{k}, p=2^{0}$
2. Compute $\tilde{\Phi}_{1}=T^{\rho} \Phi_{0}$
3. Prune $\tilde{\Phi}_{1}$ to obtain Φ_{1} such that $\left\|\tilde{\Phi}_{1}-\Phi_{1}\right\|_{F}$ is minimal
4. Update $p \leftarrow 2 * p$
5. Compute $\tilde{\Phi}_{2}=T^{p} \Phi_{1}$
6. Prune $\tilde{\Phi}_{2}$ to obtain Φ_{2} such that $\left\|\tilde{\Phi}_{2}-\Phi_{2}\right\|_{F}$ is minimal

- Get a set of scaling functions Φ_{j} spanning spaces V_{j}.

Critically sampled wavelets

- Use the diffusion operator $T=\Pi^{1 / 2} P \Pi^{-1 / 2}$ to find the bases (scaling functions) $\left\{\Phi_{j}\right\}_{1 \leq j \leq J}$ of nested spaces $\left\{V_{j}\right\}_{1 \leq j \leq J}, V_{J} \subset V_{J-1} \cdots \subset V_{0}$
- Sketch of the algorithm:

1. Start with : $\Phi_{0}=\left\{\delta_{k}\right\}_{k}, p=2^{0}$
2. Compute $\tilde{\Phi}_{1}=T^{\rho} \Phi_{0}$
3. Prune $\tilde{\Phi}_{1}$ to obtain Φ_{1} such that $\left\|\tilde{\Phi}_{1}-\Phi_{1}\right\|_{F}$ is minimal
4. Update $p \leftarrow 2 * p$
5. Compute $\tilde{\Phi}_{2}=T^{p} \Phi_{1}$
6. Prune $\tilde{\Phi}_{2}$ to obtain Φ_{2} such that $\left\|\tilde{\Phi}_{2}-\Phi_{2}\right\|_{F}$ is minimal

- Get a set of scaling functions Φ_{j} spanning spaces V_{j}.
- Diffusion wavelets Ψ_{j} are obtained as the bases of the complement W_{j} of V_{j+1} in V_{j}

$$
\Psi_{j}=\Phi_{j}-\Phi_{j+1} \Phi_{j}^{t} \Phi_{j+1}
$$

Some wavelets and scaling functions with diffusion method on cycle graph

Figure 10. Orthogonal and biorthogonal scaling functions on the directed cycle graph \mathcal{C}_{256}.

Some wavelets and scaling functions with diffusion method on cycle graph

Figure 11. Orthogonal and biorthogonal wavelet functions on the directed cycle graph \mathcal{C}_{256}.

Comparison between scaling functions from Graph Filters and from diffusion

- Case 2: Use the spectral properties of $\bar{T}_{\alpha}=\Pi^{1 / 2} \bar{P}_{\alpha} \Pi^{-1 / 2}$ to define:

$$
H_{\alpha}=\sum_{\omega \in \omega} h(t w) S_{w, \alpha}
$$

With $t=2^{4}$ and $h(x)=\exp (-x)$.

- Case 3: For different scales $j:\left\{T^{2^{j}}\right\}_{j=1}^{5}$ for diffusion wavelet and $\left\{\bar{T}^{2^{j}}\right\}_{j=1}^{5}$ for spectral wavelets

Comparison between scaling functions from Graph Filters and from diffusion

Figure 13. $50^{\text {th }}$ scaling function at scale 4 on a graph $\mathcal{G} \sim$ $\operatorname{DWS}(64,2,0.02), \alpha \in\{0,0.5,1\}$, eq. (33).

Comparison between scaling functions from Graph Filters and from diffusion

Bi-orthogonal scaling function
Node 49

Orthogonal scaling function Node 49

Diffusion wavelets

Bi -orthogonal scaling function
Node 49

Scaling function Node 49
Spectral Wavelets

Figure 14. Orthogonal and bi-orthogonal scaling functions built w.r.t the diffusion wavelet framework versus scaling function built w.r.t spectral wavelets framework.

Semi-supervised Learning

- Method 1: for y in $\ell^{2}(\mathcal{V})$

$$
\underset{f}{\operatorname{argmin}} c\left\|M_{l}(f-y)\right\|^{2}+c\left\|\left(\mathrm{I}-M_{l}\right) f\right\|^{2}+\rho_{2}\langle f, \mathcal{L} f\rangle
$$

Where M_{l} is the diagonal matrix with 0 on vertices with unkown labels

- Method 2: for y in $\ell^{2}(\mathcal{V}, \pi)$

$$
\underset{f}{\operatorname{argmin}} c\left\|M_{l}(f-y)\right\|_{\pi}^{2}+c\left\|\left(\mathrm{I}-M_{l}\right) f\right\|_{\pi}^{2}+\rho_{2}\left\langle f, \mathcal{L}_{R W} f\right\rangle_{\pi}
$$

- Method 3: baseline method from [SM13]

$$
\underset{f}{\operatorname{argmin}} c\left\|M_{l}(f-y)\right\|^{2}+c\left\|f-W^{\text {norm }} f\right\|^{2}
$$

- Benchmark: graph of political blogs with binary label $-1 / 1$

Semi-supervised Learning

Graph Signal Reconstruction

- Random graph signal y with missing values. Objective:

$$
\underset{\boldsymbol{\theta}=\left\{\theta_{k}\right\}}{\operatorname{argmin}} \mathbb{E}\left[\left\|f_{0}-\sum_{k} \theta_{k} R^{k} y\right\|^{2}\right]
$$

- Results with different reference operator $R \in\left\{P, \bar{P}, T, \bar{T}, W^{\text {norm }}\right\}$

Graph Signal Reconstruction

Graph signal reconstruction

Conclusion

- The Wandom Walk Operator P leads to a definition of the Laplacian $\mathcal{L}_{R W}$.

Conclusion

- The Wandom Walk Operator P leads to a definition of the Laplacian $\mathcal{L}_{R W}$.
- $\mathcal{L}_{R W}$ is linked with the Dirichlet energy on \mathcal{G} which gives a definition of frequencies when applied on the eigenvectors of P.

Conclusion

- The Wandom Walk Operator P leads to a definition of the Laplacian $\mathcal{L}_{R W}$.
- $\mathcal{L}_{R W}$ is linked with the Dirichlet energy on \mathcal{G} which gives a definition of frequencies when applied on the eigenvectors of P.
- Graph Filters can be defined by constructing polynomial sum of P or by linear combination of its eigenprojectors.

Conclusion

- The Wandom Walk Operator P leads to a definition of the Laplacian $\mathcal{L}_{R W}$.
- $\mathcal{L}_{R W}$ is linked with the Dirichlet energy on \mathcal{G} which gives a definition of frequencies when applied on the eigenvectors of P.
- Graph Filters can be defined by constructing polynomial sum of P or by linear combination of its eigenprojectors.
- Diffusion Wavelets can be constructed via the diffusion operator T, the proposed construction framework has some limitation.

Conclusion

- The Wandom Walk Operator P leads to a definition of the Laplacian $\mathcal{L}_{R W}$.
- $\mathcal{L}_{R W}$ is linked with the Dirichlet energy on \mathcal{G} which gives a definition of frequencies when applied on the eigenvectors of P.
- Graph Filters can be defined by constructing polynomial sum of P or by linear combination of its eigenprojectors.
- Diffusion Wavelets can be constructed via the diffusion operator T, the proposed construction framework has some limitation.
- Good results on graph signal reconstruction and semi-supervised learning.

Conclusion

- The Wandom Walk Operator P leads to a definition of the Laplacian $\mathcal{L}_{R W}$.
- $\mathcal{L}_{R W}$ is linked with the Dirichlet energy on \mathcal{G} which gives a definition of frequencies when applied on the eigenvectors of P.
- Graph Filters can be defined by constructing polynomial sum of P or by linear combination of its eigenprojectors.
- Diffusion Wavelets can be constructed via the diffusion operator T, the proposed construction framework has some limitation.
- Good results on graph signal reconstruction and semi-supervised learning.
- The ergodic constraint on P might not be necessary, maybe irreducible is sufficient.

Carl D Meyer. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000.
Aliaksei Sandryhaila and José MF Moura. "Discrete signal processing on graphs". In: IEEE transactions on signal processing 61.7 (2013), pp. 1644-1656.
Harry Sevi, Gabriel Rilling, and Pierre Borgnat. "Harmonic analysis on directed graphs and applications: from Fourier analysis to wavelets". In: arXiv preprint arXiv:1811.11636 (2018).

[^0]: ${ }^{1}$ Actually if P is irreducible, we almost have the same properties, see [Mev00 Chan 81

