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Graph Signal Processing on undirected graphs

I The adjacency matrix A is real symmetric
I Thus Laplacians (L = D − A, Ln, Ld , . . . ) have good spectral

properties

– diagonalizable with orthonormal basis and eigenvalues vi in R+

and vi ↔ ω frequency

I Filters or wavelet H as a finite polynomial sum of a reference
operator R (e.g R = L):

H = h(L) =
∑

k
αkLk (1)

Filters are defined with {αk}k , wavelets by dilation s of h(sL)
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This paper: Graph Signal Processing on directed graphs

I The adjacency matrix A is real non symmetric
I “Naive” Laplacians (L = D − A, Ln, Ld , . . . ) for undirected

graphs are generally not adapted

– if diagonalizable, eigenvalues vi in C and vi ↔ ?

I In general: we are interested in operators which measure the
smoothness of signals f and their spectral properties leads to
Fourier-like basis.

I The questions are:

1. What type of Laplacian should we use to measure the
smoothness of signals on directed graphs ?

2. What reference operator can we use do define filters on
directed graphs ?

I The authors of [SRB18] propose to use the random walk
operator on directed graphs:

◦ It gives a Laplacian for directed graphs
◦ and leads to a frequency interpretation of the spectral

properties of A
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From Adjacent Matrix to Random Walk Operator

Given a graph G = (V, E ,W ), the Random Walk Operator is

P = D−1W (2)

Where D−1 is the diagonal matrix of out-degrees of W ,
Di,i =

∑
wi,j

I P is the transition matrix of the Markov Chain defined on G
p(x , y) = Px ,y = P(Xn+1 = y |Xn = x) (3)

Operations with the Random Walk Operator

Left and right operations of P :

Pf (x) =
∑

p(x , y)f (y) = EPY |X [ f ]︸ ︷︷ ︸
mass averaged and propagated back to child node x

(4)

πP(y) =
∑

π(x)p(x , y)

(5)
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Some properties of the Random Walk Operator
I It is irreducible if:

∀x , y ∈ V,∃m <∞ : P(Xn+m = y |xn = x) > 0 (6)

This is equivalent to say that G is strongly connected.

I aperiodic if :

∀x ∈ V, gcd{n ∈ N+ : P(Xm+n = x |Xm = x) > 0} = 1 (7)

I ergodic if aperiodic and irreducible
I reversible if P∗ = P , where

P∗
x ,y = p∗(x , y) = P(Xn = y |Xn+1 = x) (8)

I If P is ergodic, P has a single eigenvalue λmax = 1 and
{∀λ 6= 1, |λ| < 1} (Perron-Frobenius Theorem)1

1Actually if P is irreducible, we almost have the same properties, see
[Mey00, Chap.8]
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Relation between P and P∗

In [SRB18] they require that P is ergodic to have

p∗(x , y) = π(y)
π(x)p(y , x) (9)

⇔ P∗ = Π−1PTΠ (10)

Where Π = diag(π(v1), . . . , π(vN)), vi ∈ V

I But eq. (10) can be obtained by applying the Bayes’s rule for
general P

I Maybe the authors of [SRB18] need ergodicity to estimate π
via power iteration method or MCMC methods since:

Pn(x , .) −−−→
n→∞

π(x) (11)

When P is ergodic.

I Actually, π can also be estimated if P is only irreducible, see
[Mey00, Chap.8]
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Two transformations of P
With P irreducible
I To make P aperiodic (and thus ergodic)

P̃ = { P̃γ : P̃γ = (1− γ)P + γI | γ ∈ [0, 1] } (12)

P̃ has the same eigenspace than P but is aperiodic

I Set of convex combination of P and P∗

P̄ = { P̄α : P̄α = (1− α)P + αP∗ | α ∈ [0, 1] } (13)

Only P̄1/2 = P̄ is reversible.
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Two function spaces
I On G, space of graph signals f , g ∈ `2(V) with

〈f , g〉 =
∑
x∈V

f (x)ḡ(x)

I On G with π, space of graph signals f , g ∈ `2(V, π) with

〈f , g〉π =
∑
x∈V

f (x)ḡ(x)π(x)

I We have an isometry ψ between `2(V) and `2(V, π)

∀f ∈ `2(V) , ψ : f 7→ Π−1/2f

I In particular,P and P∗ are adjoint in `2(V, π):

〈f ,Pg〉π = 〈P∗f , g〉π (14)

I P̄ is self adjoint and thus has an orthonormal eigenbasis.
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Laplacian for directed graphs in `2(V) and `2(V , π)

I First introduce T
T = Π1/2PΠ−1/2

Which is equivalent to ψ−1Pψ
I Let L in `2(V)

L = I− T + T T

2 (15)

I Let LRW in `2(V, π)

LRW = I− P̄ (16)

L = ψ−1LRWψ. LRW and P̄ have the same (orthonormal)
eigenspace.
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The Dirichlet energy and its link with LRW

I Dirichlet energy of a graph signal f ∈ `2(V, π) on P

D2
π,P(f ) =

1
2

∑
(x ,y)∈E

π(x)p(x , y)|f (x)− f (y)|2 (17)

= 〈f ,LRW f 〉π (18)

Rπ,P(f ) =
D2

π,P f
‖f ‖2π

(19)

Where Rπ,P is the Rayleigh quotient.

I For any eigenvectors ξ of P with eigenvalue ν.

Rπ,P(ξ) = 1−<(ν) (20)

For each (ξ, ν) of P we are able to associate a frequency
ω = 1−<(ν) ∈ [0, 2]
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Fourier Analysis on finite groups
I Example of the classical circulant matrix where P = CN

CN =



0 1 · · · · · · 0
... 0 1 · · ·

...
...

... . . . . . . ...
...

... . . . 1
1 0 · · · · · · 0



I The authors [SRB18] consider a transformation P̃γ of P in
order to have an irreducible and aperiodic (ergodic) operator
and find:

Rπ,P(ξk) = (1− γ)(1− cos(
2π(k − 1)

N )) = ωk

I By ordering the frequencies with the eigenvectors, we retrieve
the classical results of signal processing

I By taking the limit γ → 0, they could also define frequency
for P

I Extension to the case of toroidal graph Tm,n = Cm Cn where
Cm, Cn are directed cycle graphs.
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Graph filters with the Random Walk Operator
As a reference operator, choose R = P

I Graph Filter H as a linear combination of spectral projectors
Eνk associated with eigenvalues νk

Hω =
∑

k
γkEνk (21)

=
∑
ω∈ω

τωSω (22)

Where
Sω =

∑
ν :ω= 1−<(ν)

Eν

By defining h : ω → R(C), we have the graph filter with
frequency response

H =
∑
ω∈ω

h(ω)Sω
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Multiresolution analysis on directed graph
I Bank of synthesis K and analysis K̃ defined as :

K = {HtJ ,Gt1 , . . . ,GtJ} (23)
K̃ = {H̃tJ , G̃t1 , . . . , G̃tJ} (24)

Where

Ht =
∑

k
h(tωk)Sk where h is a low pass (25)

Gt =
∑

k
g(tωk)Sk where g is a high pass (26)

With Sk the random walk spectral projectors previously
defined associated to mono-frequencies ωk

I Wavelets: htJ ,k = HtJ δk and gtj ,k = Gtjδk



Critically sampled wavelets
I Use the diffusion operator T = Π1/2PΠ−1/2 to find the bases

(scaling functions) {Φj}1≤j≤J of nested spaces
{Vj}1≤j≤J ,VJ ⊂ VJ−1 · · · ⊂ V0

I Sketch of the algorithm:

1. Start with : Φ0 = {δk}k , p = 20

2. Compute Φ̃1 = T pΦ0
3. Prune Φ̃1 to obtain Φ1 such that ‖Φ̃1 − Φ1‖F is minimal
4. Update p ← 2 ∗ p
5. Compute Φ̃2 = T pΦ1
6. Prune Φ̃2 to obtain Φ2 such that ‖Φ̃2 − Φ2‖F is minimal
...

I Get a set of scaling functions Φj spanning spaces Vj .
I Diffusion wavelets Ψj are obtained as the bases of the

complement Wj of Vj+1 in Vj

Ψj = Φj − Φj+1Φ
t
jΦj+1



Critically sampled wavelets
I Use the diffusion operator T = Π1/2PΠ−1/2 to find the bases

(scaling functions) {Φj}1≤j≤J of nested spaces
{Vj}1≤j≤J ,VJ ⊂ VJ−1 · · · ⊂ V0

I Sketch of the algorithm:

1. Start with : Φ0 = {δk}k , p = 20

2. Compute Φ̃1 = T pΦ0
3. Prune Φ̃1 to obtain Φ1 such that ‖Φ̃1 − Φ1‖F is minimal
4. Update p ← 2 ∗ p
5. Compute Φ̃2 = T pΦ1
6. Prune Φ̃2 to obtain Φ2 such that ‖Φ̃2 − Φ2‖F is minimal
...

I Get a set of scaling functions Φj spanning spaces Vj .
I Diffusion wavelets Ψj are obtained as the bases of the

complement Wj of Vj+1 in Vj

Ψj = Φj − Φj+1Φ
t
jΦj+1



Critically sampled wavelets
I Use the diffusion operator T = Π1/2PΠ−1/2 to find the bases

(scaling functions) {Φj}1≤j≤J of nested spaces
{Vj}1≤j≤J ,VJ ⊂ VJ−1 · · · ⊂ V0

I Sketch of the algorithm:
1. Start with : Φ0 = {δk}k , p = 20

2. Compute Φ̃1 = T pΦ0
3. Prune Φ̃1 to obtain Φ1 such that ‖Φ̃1 − Φ1‖F is minimal
4. Update p ← 2 ∗ p
5. Compute Φ̃2 = T pΦ1
6. Prune Φ̃2 to obtain Φ2 such that ‖Φ̃2 − Φ2‖F is minimal
...

I Get a set of scaling functions Φj spanning spaces Vj .
I Diffusion wavelets Ψj are obtained as the bases of the

complement Wj of Vj+1 in Vj

Ψj = Φj − Φj+1Φ
t
jΦj+1



Critically sampled wavelets
I Use the diffusion operator T = Π1/2PΠ−1/2 to find the bases

(scaling functions) {Φj}1≤j≤J of nested spaces
{Vj}1≤j≤J ,VJ ⊂ VJ−1 · · · ⊂ V0

I Sketch of the algorithm:
1. Start with : Φ0 = {δk}k , p = 20

2. Compute Φ̃1 = T pΦ0

3. Prune Φ̃1 to obtain Φ1 such that ‖Φ̃1 − Φ1‖F is minimal
4. Update p ← 2 ∗ p
5. Compute Φ̃2 = T pΦ1
6. Prune Φ̃2 to obtain Φ2 such that ‖Φ̃2 − Φ2‖F is minimal
...

I Get a set of scaling functions Φj spanning spaces Vj .
I Diffusion wavelets Ψj are obtained as the bases of the

complement Wj of Vj+1 in Vj

Ψj = Φj − Φj+1Φ
t
jΦj+1



Critically sampled wavelets
I Use the diffusion operator T = Π1/2PΠ−1/2 to find the bases

(scaling functions) {Φj}1≤j≤J of nested spaces
{Vj}1≤j≤J ,VJ ⊂ VJ−1 · · · ⊂ V0

I Sketch of the algorithm:
1. Start with : Φ0 = {δk}k , p = 20

2. Compute Φ̃1 = T pΦ0
3. Prune Φ̃1 to obtain Φ1 such that ‖Φ̃1 − Φ1‖F is minimal

4. Update p ← 2 ∗ p
5. Compute Φ̃2 = T pΦ1
6. Prune Φ̃2 to obtain Φ2 such that ‖Φ̃2 − Φ2‖F is minimal
...

I Get a set of scaling functions Φj spanning spaces Vj .
I Diffusion wavelets Ψj are obtained as the bases of the

complement Wj of Vj+1 in Vj

Ψj = Φj − Φj+1Φ
t
jΦj+1



Critically sampled wavelets
I Use the diffusion operator T = Π1/2PΠ−1/2 to find the bases

(scaling functions) {Φj}1≤j≤J of nested spaces
{Vj}1≤j≤J ,VJ ⊂ VJ−1 · · · ⊂ V0

I Sketch of the algorithm:
1. Start with : Φ0 = {δk}k , p = 20

2. Compute Φ̃1 = T pΦ0
3. Prune Φ̃1 to obtain Φ1 such that ‖Φ̃1 − Φ1‖F is minimal
4. Update p ← 2 ∗ p

5. Compute Φ̃2 = T pΦ1
6. Prune Φ̃2 to obtain Φ2 such that ‖Φ̃2 − Φ2‖F is minimal
...

I Get a set of scaling functions Φj spanning spaces Vj .
I Diffusion wavelets Ψj are obtained as the bases of the

complement Wj of Vj+1 in Vj

Ψj = Φj − Φj+1Φ
t
jΦj+1



Critically sampled wavelets
I Use the diffusion operator T = Π1/2PΠ−1/2 to find the bases

(scaling functions) {Φj}1≤j≤J of nested spaces
{Vj}1≤j≤J ,VJ ⊂ VJ−1 · · · ⊂ V0

I Sketch of the algorithm:
1. Start with : Φ0 = {δk}k , p = 20

2. Compute Φ̃1 = T pΦ0
3. Prune Φ̃1 to obtain Φ1 such that ‖Φ̃1 − Φ1‖F is minimal
4. Update p ← 2 ∗ p
5. Compute Φ̃2 = T pΦ1

6. Prune Φ̃2 to obtain Φ2 such that ‖Φ̃2 − Φ2‖F is minimal
...

I Get a set of scaling functions Φj spanning spaces Vj .
I Diffusion wavelets Ψj are obtained as the bases of the

complement Wj of Vj+1 in Vj

Ψj = Φj − Φj+1Φ
t
jΦj+1



Critically sampled wavelets
I Use the diffusion operator T = Π1/2PΠ−1/2 to find the bases

(scaling functions) {Φj}1≤j≤J of nested spaces
{Vj}1≤j≤J ,VJ ⊂ VJ−1 · · · ⊂ V0

I Sketch of the algorithm:
1. Start with : Φ0 = {δk}k , p = 20

2. Compute Φ̃1 = T pΦ0
3. Prune Φ̃1 to obtain Φ1 such that ‖Φ̃1 − Φ1‖F is minimal
4. Update p ← 2 ∗ p
5. Compute Φ̃2 = T pΦ1
6. Prune Φ̃2 to obtain Φ2 such that ‖Φ̃2 − Φ2‖F is minimal

...
I Get a set of scaling functions Φj spanning spaces Vj .
I Diffusion wavelets Ψj are obtained as the bases of the

complement Wj of Vj+1 in Vj

Ψj = Φj − Φj+1Φ
t
jΦj+1



Critically sampled wavelets
I Use the diffusion operator T = Π1/2PΠ−1/2 to find the bases

(scaling functions) {Φj}1≤j≤J of nested spaces
{Vj}1≤j≤J ,VJ ⊂ VJ−1 · · · ⊂ V0

I Sketch of the algorithm:
1. Start with : Φ0 = {δk}k , p = 20

2. Compute Φ̃1 = T pΦ0
3. Prune Φ̃1 to obtain Φ1 such that ‖Φ̃1 − Φ1‖F is minimal
4. Update p ← 2 ∗ p
5. Compute Φ̃2 = T pΦ1
6. Prune Φ̃2 to obtain Φ2 such that ‖Φ̃2 − Φ2‖F is minimal
...

I Get a set of scaling functions Φj spanning spaces Vj .
I Diffusion wavelets Ψj are obtained as the bases of the

complement Wj of Vj+1 in Vj

Ψj = Φj − Φj+1Φ
t
jΦj+1



Critically sampled wavelets
I Use the diffusion operator T = Π1/2PΠ−1/2 to find the bases

(scaling functions) {Φj}1≤j≤J of nested spaces
{Vj}1≤j≤J ,VJ ⊂ VJ−1 · · · ⊂ V0

I Sketch of the algorithm:
1. Start with : Φ0 = {δk}k , p = 20

2. Compute Φ̃1 = T pΦ0
3. Prune Φ̃1 to obtain Φ1 such that ‖Φ̃1 − Φ1‖F is minimal
4. Update p ← 2 ∗ p
5. Compute Φ̃2 = T pΦ1
6. Prune Φ̃2 to obtain Φ2 such that ‖Φ̃2 − Φ2‖F is minimal
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Comparison between scaling functions from Graph Filters and
from diffusion
I Case 2: Use the spectral properties of T̄α = Π1/2P̄αΠ

−1/2 to
define:

Hα =
∑
ω∈ω

h(tw)Sw ,α

With t = 24 and h(x) = exp(−x).
I Case 3: For different scales j: {T 2j}5j=1 for diffusion wavelet

and {T̄ 2j}5j=1 for spectral wavelets
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Semi-supervised Learning
I Method 1: for y in `2(V)

argmin
f

c‖Ml(f − y)‖2 + c‖(I−Ml)f ‖2 + ρ2〈f ,Lf 〉

Where Ml is the diagonal matrix with 0 on vertices with
unkown labels

I Method 2: for y in `2(V, π)

argmin
f

c‖Ml(f − y)‖2π + c‖(I−Ml)f ‖2π + ρ2〈f ,LRW f 〉π

I Method 3: baseline method from [SM13]

argmin
f

c‖Ml(f − y)‖2 + c‖f −W normf ‖2

I Benchmark: graph of political blogs with binary label −1/1
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Graph Signal Reconstruction
I Random graph signal y with missing values. Objective:

argmin
θ={θk}

E[ ‖f0 −
∑

k
θkRky‖2 ]

I Results with different reference operator
R ∈ {P , P̄ ,T , T̄ ,W norm}
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Conclusion
I The Wandom Walk Operator P leads to a definition of the

Laplacian LRW .

I LRW is linked with the Dirichlet energy on G which gives a
definition of frequencies when applied on the eigenvectors of
P .

I Graph Filters can be defined by constructing polynomial sum
of P or by linear combination of its eigenprojectors.

I Diffusion Wavelets can be constructed via the diffusion
operator T , the proposed construction framework has some
limitation.

I Good results on graph signal reconstruction and
semi-supervised learning.

I The ergodic constraint on P might not be necessary, maybe
irreducible is sufficient.
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