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» The adjacency matrix A is real symmetric

» Thus Laplacians (L =D — A, L, Lg,...) have good spectral
properties

— diagonalizable with orthonormal basis and eigenvalues v; in R™
and v; <> w frequency

> Filters or wavelet H as a finite polynomial sum of a reference
operator R (e.g R = L):

H=nh(L)=> al (1)
k

Filters are defined with {c }«, wavelets by dilation s of h(sL)
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» The adjacency matrix A is real non symmetric
» “Naive" Laplacians (L =D — A, L, Lg,...) for undirected
graphs are generally not adapted
— if diagonalizable, eigenvalues v; in C and v; <7

» In general: we are interested in operators which measure the
smoothness of signals f and their spectral properties leads to
Fourier-like basis.

» The questions are:

1. What type of Laplacian should we use to measure the
smoothness of signals on directed graphs ?

2. What reference operator can we use do define filters on
directed graphs 7

» The authors of [SRB18] propose to use the random walk

operator on directed graphs:
o It gives a Laplacian for directed graphs
o and leads to a frequency interpretation of the spectral
properties of A
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Given a graph G = (V, &, W), the Random Walk Operator is

P=D"'W (2)

Where D1 is the diagonal matrix of out-degrees of W,
Dj; = E w; j
» P is the transition matrix of the Markov Chain defined on G

p(x,y) = Pxy = P(Xny1 = y[Xn = x) (3)

Operations with the Random Walk Operator
Left and right operations of P:

= p(x,y)f(y) =Es, [ f] (4)

———
mass averaged and propagated back to child node x

P(y) = 3 7(x)p(x.y) (5)
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Some properties of the Random Walk Operator

» It is irreducible if:
Vx,y € V,3m < 00 : P(Xptm = y|xn =x) >0

This is equivalent to say that G is strongly connected.
> aperiodic if :

Vx € V,ged{n € NT : P(X;pyn = x|Xm = x) > 0} =

» ergodic if aperiodic and irreducible
» reversible if P* = P, where

'D:,y =p*(x,y) = P(Xy = y[Xny1 = x)

» If P is ergodic, P has a single eigenvalue Apax = 1 and
{VA # 1,|)\| < 1} (Perron-Frobenius Theorem)?

!Actually if P is irreducible, we almost have the same properties, see
MevOD Chan Q1
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Relation between P and P*
In [SRB18] they require that P is ergodic to have

P (x,y) = ZX;P(%X) (9)
& P =n7tP™n (10)

Where N = diag(m(v1),...,7(vn)), vi € V
» But eq. (10) can be obtained by applying the Bayes's rule for
general P

» Maybe the authors of [SRB18] need ergodicity to estimate m
via power iteration method or MCMC methods since:

P"(x,.) —— m(x) (11)

n—oo

When P is ergodic.

» Actually, 7 can also be estimated if P is only irreducible, see
[Mey00, Chap.§]



Two transformations of P
With P irreducible

» To make P aperiodic (and thus ergodic)
P={P,:Py=(1-7)P+~1|y€[0,1]}

P has the same eigenspace than P but is aperiodic



Two transformations of P
With P irreducible

» To make P aperiodic (and thus ergodic)
P={P,:Py=(1-7)P+~1|y€[0,1]}

P has the same eigenspace than P but is aperiodic

» Set of convex combination of P and P*
P={Py:P,=(1—-a)P+aP*|ac|01]}

Only .51/2 = P is reversible.

(13)
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Two function spaces

» On G, space of graph signals f, g € /2(V) with

g = f(x)z(x)

xeV

» On G with 7, space of graph signals f,g € ¢?(V, w) with

Z f(x)g(x)m(x)

xey

» We have an isometry v between (?(V) and £2(V, )
VFeP(V), ¢:feN2f
» In particular,P and P* are adjoint in ¢?(V, 7):
(f,Pg)x = (Pf.g)x (14)

» P is self adjoint and thus has an orthonormal eigenbasis.
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Laplacian for directed graphs in /2(V) and (?(V, )
» First introduce T
T =nY2pn-1/2
Which is equivalent to )~ Py
> Let £ in (2(V)

T+TT
c—1-1%

(15)
> Let Lrw in £2(V,7T)

Lrw=1—P (16)

L =1 Lrwv. Lrw and P have the same (orthonormal)
eigenspace.
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The Dirichlet energy and its link with Ly,
» Dirichlet energy of a graph signal f € /2(V, ) on P

1
D2p(F) =5 3 w)p()IF(x) — F(y)
(x,y)e€
= (f, Lrwf)r
D2 pf
Rer ) =z

Where R p is the Rayleigh quotient.

» For any eigenvectors £ of P with eigenvalue v.

Rep(€) = 1 - R(v)

For each (&, ) of P we are able to associate a frequency
w=1-R(r)e|0,2]

(20)



Fourier Analysis on finite groups

» Example of the classical circulant matrix where P = Cpy

01 -+« --- 0

Cn



Fourier Analysis on finite groups
» Example of the classical circulant matrix where P = Cpy
> The authors [SRB18] consider a transformation P, of P in
order to have an irreducible and aperiodic (ergodic) operator
and find:

Rrp(ék) =(1—7)(1 - cos(27r(kN_1))) = Wi



Fourier Analysis on finite groups
» Example of the classical circulant matrix where P = Cpy
> The authors [SRB18] consider a transformation P, of P in
order to have an irreducible and aperiodic (ergodic) operator
and find:

R pl(6) = (1-7)(1 — cos( 22y

» By ordering the frequencies with the eigenvectors, we retrieve
the classical results of signal processing



Fourier Analysis on finite groups

» Example of the classical circulant matrix where P = Cpy

> The authors [SRB18] consider a transformation P, of P in
order to have an irreducible and aperiodic (ergodic) operator
and find:

R pl(6) = (1-7)(1 — cos( 22y

» By ordering the frequencies with the eigenvectors, we retrieve
the classical results of signal processing

» By taking the limit v — 0, they could also define frequency
for P



Fourier Analysis on finite groups

» Example of the classical circulant matrix where P = Cpy

> The authors [SRB18] consider a transformation P, of P in
order to have an irreducible and aperiodic (ergodic) operator
and find:

R pl(6) = (1-7)(1 — cos( 22y

» By ordering the frequencies with the eigenvectors, we retrieve
the classical results of signal processing

» By taking the limit v — 0, they could also define frequency
for P (do we need P ergodic ?)



Fourier Analysis on finite groups

» Example of the classical circulant matrix where P = Cpy

> The authors [SRB18] consider a transformation P, of P in
order to have an irreducible and aperiodic (ergodic) operator
and find:

R pl(6) = (1-7)(1 — cos( 22y

» By ordering the frequencies with the eigenvectors, we retrieve
the classical results of signal processing

» By taking the limit v — 0, they could also define frequency
for P (do we need P ergodic ?)

» Extension to the case of toroidal graph 7, , = Cn0C, where
Cm,C, are directed cycle graphs.



Graph filters with the Random Walk Operator
As a reference operator, choose R = P



Graph filters with the Random Walk Operator
As a reference operator, choose R = P

» Graph Filter H as a polynomial sum of P

H="> 6P
k



Graph filters with the Random Walk Operator
As a reference operator, choose R = P

» Graph Filter H as a linear combination of spectral projectors
E,, associated with eigenvalues vy

Ho =Y nEy, (21)
k
= 7S, (22)
wew
Where
Se= > E
viw=1-R(v)

By defining h : w — R(C), we have the graph filter with
frequency response

H= Z h(w)S.,

wew



Multiresolution analysis on directed graph

» Bank of synthesis K and analysis K defined as :

’C — {Ht_p th, ey GtJ}
’6 == {ll:lt_,, étl, ceey ét_;}
Where
H; = Z h(twk)Sk where h is a low pass
k
G = Zg(twk)sk where g is a high pass
k

With S the random walk spectral projectors previously
defined associated to mono-frequencies wy

> Wavelets: hy, x = Hy,0x and gy, x = G0k

(23)
(24)

(25)

(26)
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Critically sampled wavelets

» Use the diffusion operator T = MY/2PM~1/2 to find the bases
(scaling functions) {®;}1<j< of nested spaces
{Vihi<i<i, VyC Vy1---C W
» Sketch of the algorithm:
1. Start with : &g = {0k }x, p=2°
Compute ¢, = TP,
Prune ®; to obtain ®; such that ||<T>1 — ®4]|F is minimal
Update p < 2xp
Compute o, = TPO,
Prune ®, to obtain ®, such that ||5>2 — &5||F is minimal

ok wdN

> Get a set of scaling functions ®; spanning spaces V.

» Diffusion wavelets W; are obtained as the bases of the
complement W; of Vi1 in V]

WJ — ¢J - ¢j+1¢j¢j+1



Some wavelets and scaling functions with diffusion method on

cycle graph
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F1cureg 10. Orthogonal and biorthogonal scaling functions on the

directed cycle graph Case.



Some wavelets and scaling functions with diffusion method on

cycle graph
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FIGURE 11. Orthogonal and biorthogonal wavelet functions on the
directed cycle graph Casg.



Comparison between scaling functions from Graph Filters and
from diffusion

» Case 2: Use the spectral properties of T, = MY2P,M~1/2 to
define:

Ho =Y h(tw)Sy.a

wew
With t = 2% and h(x) = exp(—x).
» Case 3: For different scales j: {T2j}15:1 for diffusion wavelet

and {sz 5.3:1 for spectral wavelets



Comparison between scaling functions from Graph Filters and

from diffusion
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Comparison between scaling functions from Graph Filters and
from diffusion

Orthogonal scaling function Orthogonal scaling function
Node 49 Node 49
s Diffusion wavelets Diffusion wavelets
04
04 2%, o3
28 g
3 02
02 s
01
o 0
P
02 %
&u > :5‘ 01
0.4 0z
0 20 a0 40 50 60
Bi-orthogonal scaling function Bi-arthogonal scaling function
Node 49 lode 49
008 Diffusion wavelets Diffusion wavelets
N 007
006 :Aﬂ“"" “a¢ 006
o o
o 005
004 004
003
>
0.02 2, :}:“‘" 002
S ool 001
0
0 2 3 40 s 60
Scaling function Scaling function
o
Spectral Wavelets Spectral Wavelets
0.08 0.07
006
0.06 005
004 004
003
002 002
001
0

10 20 30 40 50 60
Node index
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w.r.t the diffusion wavelet framework versus scaling function built
w.r.t spectral wavelets framework.



Semi-supervised Learning
» Method 1: for y in £2(V)

arg’rrnin c[[Mi(f — y)II> + cl|XT = M)F|? + paif, LF)

Where M, is the diagonal matrix with 0 on vertices with
unkown labels

» Method 2: for y in £2(V, )
argmin cf|Mj(f - VI + cll(t = M)FIIZ + p2{f . Lrw )=
» Method 3: baseline method from [SM13]

argmin c||My(f — y)||* + c[|f — wrormf?
f

» Benchmark: graph of political blogs with binary label —1/1



Semi-supervised Learning
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Graph Signal Reconstruction
» Random graph signal y with missing values. Objective:
argminE[ ||y — Y 0,R*y|*]
0={0,} k

> Results with different reference operator
Re{P,P, T, T, Wnrom}



Graph Signal Reconstruction
Graph signal reconstruction
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Conclusion
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The Wandom Walk Operator P leads to a definition of the
Laplacian Lgrw .

Lrw is linked with the Dirichlet energy on G which gives a
definition of frequencies when applied on the eigenvectors of
P.

Graph Filters can be defined by constructing polynomial sum
of P or by linear combination of its eigenprojectors.

Diffusion Wavelets can be constructed via the diffusion
operator T, the proposed construction framework has some
limitation.

Good results on graph signal reconstruction and
semi-supervised learning.

The ergodic constraint on P might not be necessary, maybe
irreducible is sufficient.
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