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Motivation

Context: Existing graph wavelet constructions only guided by the
structure of the underlying graph, and not the class of signal.

Idea: Learning to adapt existing Haar wavelets to a given class of
signals.
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Outline

Setting details
Ñ Hierarchical partitioning.
Ñ Haar wavelets.

Adapting wavelets to a class of signals
Ñ Lifting scheme.
Ñ Enforcing sparsity on detail coe�cients.

Experiments
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Setting details - Notations

Connected weighted graph G with N vertices.
Signal f P RN .
Edge weight matrix W P RNˆN (no self-loop).
Diagonal matrix of vertex weights S P RNˆN .

Integral of f
ş

G f “
ř

i Siifpiq.
Volume of a subset R of vertices VolpRq “

ř

iPR Sii.
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Setting details - Hierarchical partitioning

Hierarchical partitioning of graph G required!
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Setting details - Discrete multi-scale transform

Set of all signals on graph G: L2pGq,
Nested sequence of approximation spaces:
V1 Ă V2 ¨ ¨ ¨ Ă Vlmax “ L2pGq,
Wavelet/detail spaces Wl: such that Vl`1 “ Vl ‘Wl,
Basis for Vl: scaling functions tφl,ku,
Basis for Wl: wavelet functions tψl,ku.

Wavelet decomposition of a signal f P L2pGq defined as:

f “
ÿ

k

al0,kφl0,k `
lmax´1

ÿ

l“l0

ÿ

k

dl,kψl,k .
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Setting details - Haar wavelets

Given a region of the graph Rl,k, the Haar approximation of āl,k and d̄l,k
is used.

āl,k is the average of the graph signal f on Rl,k:

āl,k “ VolpRl,kq
´1

ż

Rl,k

f .

d̄l,k is associated to a region Rl`1,k. It is the di�erence between
averages at region Rl`1,k and its parent region Rl,parpkq:

d̄l,k “ āl`1,k ´ āl,parpkq .
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Adaptation - Lifting scheme

Lifting scheme: one step of forward (left) and backward (right)
transform. Here al and dl denote the vectors of all approximation and
detail coe�cients of the lifted transform at level l. U and P are linear
update and predict operators. HT and IHT are the Haar transform

and its inverse.
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Adaptation - Haar wavelets

Given a region of the graph Rl,k, the Haar approximation is now part of
the lifting scheme.

The average of Rl,k is computed as the average of its children
regions:

āl,k “ VolpRl,kq
´1

ÿ

j,parpjq“k
al`1,jVolpRl`1,jq .

d̄l,k is also a function of al`1:

d̄l,k “ al`1,k ´ āl,parpkq .
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Adaptation - Enforcing sparsity

Goal: Design wavelets that yield approximately sparse expansions -
i.e., details coe�cients should be mostly small.

Set of training functions tfnunmax
n“1

Given a training function fn, a level l, and s a sparsity penalty
function, the following minimization problem is considered:

tU,P u “ arg min
U,P

ÿ

n

spdnl q “ arg min
U,P

ÿ

n

spd̄nl ´ P pā
n
l ` Ud̄

n
l qq .

Training from the finest level, where anl`1 “ fn, to coarse level.
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To sum up...

1 Choose a hierarchical
partitioning algorithm and a
maximal level lmax.

2 Compute the average of the
signal f on the sub-graphs at
level lmax.

3 For l in range lmax ´ 1 to 1:
˝ Using al`1, compute the

Haar coe�cients āl and d̄l.
˝ Learn the matrices U and P .
˝ Retrieve al and dl.
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Satisfied requirements?

Usual requirements for a proper multi-scale transform

X critical (or at least controlled) sampling

X perfect recovery

X orthogonality

X applicable to any arbitrary graphs
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Experiments

Scaling (left) and wavelet (right) functions on a periodic interval.

Myriam Bontonou (IMT Atlantique) July 1st, 2020 15 / 19



Experiments

Our construction trained with smooth prior on the network (a), yields
the scaling functions (b,c,d,e,f). A sample continuous function (g) out

of 100 total test functions. Better average reconstruction results (h) for
our wavelets (Wav-smooth) indicate a good generalization

performance.
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Experiments

Our construction on the station network (a) trained with daily
temperature data (e.g. (b)), yields the scaling functions (c,d,e,f).

Reconstruction results (g) using our wavelets trained on data
(Wav-data) and with smooth prior (Wav-smooth). Results on

semi-supervised learning (h).

Myriam Bontonou (IMT Atlantique) July 1st, 2020 17 / 19



Experiments

The scaling functions (a) resulting from training on a face images
dataset. These wavelets (Wav-data) provide better sparse

reconstruction quality than the CDF9/7 wavelets filterbanks (b,c).
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Conclusion

Introduction of a new wavelet transform, which takes into account
graph structures, and learns to adapt to classes of signals.

Graph structures handled with a hierarchical partitioning
algorithm and Haar wavelets.

Classes of signals learned over training functions, through an
optimization procedure enforcing a sparse decomposition.
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