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m Context: Existing graph wavelet constructions only guided by the
structure of the underlying graph, and not the class of signal.

Myriam Bontonou (IMT Atlantique) July 1st, 2020 2/19



m Context: Existing graph wavelet constructions only guided by the
structure of the underlying graph, and not the class of signal.

m Idea: Learning to adapt existing Haar wavelets to a given class of
signals.
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m Setting details

—> Hierarchical partitioning.
—> Haar wavelets.

m Adapting wavelets to a class of signals

—> Lifting scheme.
—> Enforcing sparsity on detail coefficients.

m Experiments
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Setting details - Notations

m Connected weighted graph G with N vertices.
= Signal f e RV,

= Edge weight matrix W e RV*¥ (no self-loop).
= Diagonal matrix of vertex weights S € RV*¥V,

= Integralof f §; f = >, S f(i).
= Volume of a subset R of vertices Vol(R) = >}, Sii-
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Setting details - Hierarchical partitioning

Hierarchical partitioning of graph G required!
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Setting details - Discrete multi-scale transform

= Set of all signals on graph G: L*(G),

m Nested sequence of approximation spaces:
V]. c ‘/2 (e Vmax = LQ(Q),

m Wavelet/detail spaces W;: suchthat V.1 = V@ W,
m Basis for Vj: scaling functions {¢; 1},
m Basis for W;: wavelet functions {1 1. }.

Wavelet decomposition of a signal f € L?(G) defined as:

lmax_l
F= ankbior+ Y, D dixtbiy -
s =ty &

Myriam Bontonou (IMT Atlantique) July 1st, 2020 6/19



Setting details - Haar wavelets

Given a region of the graph Ry j,, the Haar approximation of @; ;, and lek
is used.

® a; is the average of the graph signal f on Ry ;:
arp = Vol(Ryx) ™! f-
Ry

m d; is associated to a region Ry 41 1. Itis the difference between
averages at region ;1 and its parent region R par(1):

dik = @141,k — Q1 par(k) -
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Adaptation - Lifting scheme

—— Qg e ay

a1 —[HT) THT }>ari

Lifting scheme: one step of forward (left) and backward (right)
transform. Here a; and d; denote the vectors of all approximation and
detail coefficients of the lifted transform at level [. U and P are linear

update and predict operators. HT and I HT are the Haar transform
and its inverse.
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Adaptation - Haar wavelets

Given a region of the graph Ry j, the Haar approximation is now part of
the lifting scheme.

m The average of R;;; is computed as the average of its children
regions:

e = Vol(Rip)™" Y. a1 Vol(Rigy) .

m d; is also a function of a;1:

dik = Q11,6 — Gl par(k) -
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Adaptation - Enforcing sparsity

Goal: Design wavelets that yield approximately sparse expansions -
i.e., details coefficients should be mostly small.

m Set of training functions { f™}, ™

m Given a training function f", a level [, and s a sparsity penalty
function, the following minimization problem is considered:

{U, P} = arg I[r]lilngs(d?) — arg %11525(&;‘ — P@ +Udy)) .
’ n T oon

= Training from the finest level, where a}', | = f", to coarse level.
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Choose a hierarchical
partitioning algorithm and a
maximal level [nay.

Compute the average of the
signal f on the sub-graphs at
level Imax-

Forlinrangelmax — 1to 1:

© Using a;41, compute the
Haar coefficients @; and d;.

o Learn the matrices U and P.
o Retrieve a; and d;.
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Satisfied requirements?

Usual requirements for a proper multi-scale transform
v critical (or at least controlled) sampling
v perfect recovery
v/ orthogonality

v applicable to any arbitrary graphs
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Scaling (left) and wavelet (right) functions on a periodic interval.
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Experiments
518 !“- . R .
i\ ‘ %

(a) Road network (b) Scaling ¢ =2 (c) Scaling £ =4 (d) Scaling £ =6

~25 —— Haar
-1 0 1 -1.5 0 1.5 -1 0 1
5 ’ ) —+— Wav-smooth
is g
2 & o ”“;_,_. =
T T 0
aad 0 .02 ,04 .06 . .1
Fraction of detaﬂ coe%cients

(e) Scaling / = 8 (f) Scaling £ = 10 (g) Sample function (h) Reconstruction error

Our construction trained with smooth prior on the network (a), yields
the scaling functions (b,c,d,e,f). A sample continuous function (g) out
of 100 total test functions. Better average reconstruction results (h) for
our wavelets (Wav-smooth) indicate a good generalization
performance.
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Our construction on the station network (a) trained with daily
temperature data (e.g. (b)), yields the scaling functions (c,d,e,f).
Reconstruction results (g) using our wavelets trained on data
(Wav-data) and with smooth prior (Wav-smooth). Results on
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(a) Scaling functions
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(b) PSNR (c) SSIM

The scaling functions (a) resulting from training on a face images
dataset. These wavelets (Wav-data) provide better sparse
reconstruction quality than the CDF9/7 wavelets filterbanks (b,c).
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Conclusion

m Introduction of a new wavelet transform, which takes into account
graph structures, and learns to adapt to classes of signals.

m Graph structures handled with a hierarchical partitioning
algorithm and Haar wavelets.

m Classes of signals learned over training functions, through an
optimization procedure enforcing a sparse decomposition.
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