## Wavelets on Graphs via Deep Learning

#### **Raif M. Rustamov and Leonidas Guibas**

Presented by Myriam Bontonou

July 1st, 2020

Myriam Bontonou (IMT Atlantique)

July 1st, 2020 1/19

 Context: Existing graph wavelet constructions only guided by the structure of the underlying graph, and not the class of signal.

 Idea: Learning to adapt existing Haar wavelets to a given class of signals.  Context: Existing graph wavelet constructions only guided by the structure of the underlying graph, and not the class of signal.

 Idea: Learning to adapt existing Haar wavelets to a given class of signals.

#### Setting details

- $\rightarrow$  Hierarchical partitioning.
- → Haar wavelets.

### Adapting wavelets to a class of signals

- $\rightarrow$  Lifting scheme.
- → Enforcing sparsity on detail coefficients.

#### Setting details

- → Hierarchical partitioning.
- → Haar wavelets.

### Adapting wavelets to a class of signals

- $\rightarrow$  Lifting scheme.
- → Enforcing sparsity on detail coefficients.

- Connected weighted graph  $\mathcal G$  with N vertices.
- Signal  $f \in \mathbb{R}^N$ .
- Edge weight matrix  $W \in \mathbb{R}^{N \times N}$  (no self-loop).
- Diagonal matrix of vertex weights  $S \in \mathbb{R}^{N \times N}$ .



Integral of  $f \int_{\mathcal{G}} f = \sum_i S_{ii} f(i)$ .

Volume of a subset R of vertices  $Vol(R) = \sum_{i \in R} S_{ii}$ .

# Setting details - Hierarchical partitioning

#### Hierarchical partitioning of graph $\mathcal{G}$ required!



## Setting details - Discrete multi-scale transform

- Set of all signals on graph *G*: *L*<sup>2</sup>(*G*),
- Nested sequence of approximation spaces:  $V_1 \subset V_2 \cdots \subset V_{l_{\max}} = L^2(\mathcal{G})$ ,
- Wavelet/detail spaces  $W_l$ : such that  $V_{l+1} = V_l \oplus W_l$ ,
- Basis for  $V_l$ : scaling functions  $\{\phi_{l,k}\}$ ,
- Basis for  $W_l$ : wavelet functions  $\{\psi_{l,k}\}$ .

Wavelet decomposition of a signal  $f \in L^2(\mathcal{G})$  defined as:

$$f = \sum_{k} a_{l_0,k} \phi_{l_0,k} + \sum_{l=l_0}^{l_{\max}-1} \sum_{k} d_{l,k} \psi_{l,k} .$$

Given a region of the graph  $R_{l,k}$ , the Haar approximation of  $\bar{a}_{l,k}$  and  $\bar{d}_{l,k}$  is used.

•  $\bar{a}_{l,k}$  is the average of the graph signal f on  $R_{l,k}$ :

$$\bar{a}_{l,k} = \operatorname{Vol}(R_{l,k})^{-1} \int_{R_{l,k}} f \ .$$

■  $\bar{d}_{l,k}$  is associated to a region  $R_{l+1,k}$ . It is the difference between averages at region  $R_{l+1,k}$  and its parent region  $R_{l,par(k)}$ :

$$\bar{d}_{l,k} = \bar{a}_{l+1,k} - \bar{a}_{l,\mathsf{par}(k)} \ .$$

#### Setting details

- $\rightarrow$  Hierarchical partitioning.
- → Haar wavelets.

### Adapting wavelets to a class of signals

- $\rightarrow$  Lifting scheme.
- → Enforcing sparsity on detail coefficients.

# Adaptation - Lifting scheme



Lifting scheme: one step of forward (left) and backward (right) transform. Here  $a_l$  and  $d_l$  denote the vectors of all approximation and detail coefficients of the lifted transform at level l. U and P are linear update and predict operators. HT and IHT are the Haar transform and its inverse.

Given a region of the graph  $R_{l,k}$ , the Haar approximation is now part of the lifting scheme.

■ The average of *R*<sub>*l,k*</sub> is computed as the average of its children regions:

$$\bar{a}_{l,k} = \mathsf{Vol}(R_{l,k})^{-1} \sum_{j,\mathsf{par}(j)=k} a_{l+1,j} \mathsf{Vol}(R_{l+1,j}) \;.$$

•  $\bar{d}_{l,k}$  is also a function of  $a_{l+1}$ :

$$\bar{d}_{l,k} = a_{l+1,k} - \bar{a}_{l,\mathsf{par}(k)} \ .$$

Goal: Design wavelets that yield approximately sparse expansions - i.e., details coefficients should be mostly small.

- Set of training functions  $\{f^n\}_{n=1}^{n_{\text{max}}}$
- Given a training function *f*<sup>*n*</sup>, a level *l*, and *s* a sparsity penalty function, the following minimization problem is considered:

$$\{U,P\} = \arg\min_{U,P} \sum_n s(d_l^n) = \arg\min_{U,P} \sum_n s(\bar{d}_l^n - P(\bar{a}_l^n + U\bar{d}_l^n)) \ .$$

Training from the finest level, where  $a_{l+1}^n = f^n$ , to coarse level.



- Choose a hierarchical partitioning algorithm and a maximal level lmax.
- Compute the average of the signal f on the sub-graphs at level lmax.
- **3** For l in range  $l_{\max} 1$  to **1**:
  - Using  $a_{l+1}$ , compute the Haar coefficients  $\bar{a}_l$  and  $\bar{d}_l$ .
  - Learn the matrices U and P.
  - Retrieve  $a_l$  and  $d_l$ .

Usual requirements for a proper multi-scale transform

July 1st. 2020

- critical (or at least controlled) sampling
- ✓ perfect recovery
- ✓ orthogonality
- applicable to any arbitrary graphs

#### Setting details

- $\rightarrow$  Hierarchical partitioning.
- → Haar wavelets.

### Adapting wavelets to a class of signals

- $\rightarrow$  Lifting scheme.
- → Enforcing sparsity on detail coefficients.



### Scaling (left) and wavelet (right) functions on a periodic interval.

July 1st, 2020 15/19

## **Experiments**



Our construction trained with smooth prior on the network (a), yields the scaling functions (b,c,d,e,f). A sample continuous function (g) out of 100 total test functions. Better average reconstruction results (h) for our wavelets (Wav-smooth) indicate a good generalization performance.

## Experiments



Our construction on the station network (a) trained with daily temperature data (e.g. (b)), yields the scaling functions (c,d,e,f). Reconstruction results (g) using our wavelets trained on data (Wav-data) and with smooth prior (Wav-smooth). Results on semi-supervised learning (h).

## Experiments



The scaling functions (a) resulting from training on a face images dataset. These wavelets (Wav-data) provide better sparse reconstruction quality than the CDF9/7 wavelets filterbanks (b,c).

Introduction of a new wavelet transform, which takes into account graph structures, and learns to adapt to classes of signals.

 Graph structures handled with a hierarchical partitioning algorithm and Haar wavelets.

 Classes of signals learned over training functions, through an optimization procedure enforcing a sparse decomposition.