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Wavelet zoom
a local characterization of functions
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Local characterization of regularity via the derivatives

"Smoothness" depends on the differentiability class to which a function
belongs to. Among these 4 continuous (C°) functions:

° is the only one and C*®
@ x — |x| is not differentiable at x = 0 (corner)

@ x +— +/|x| (cusp) and ( ) have kind of "infinite gradient"
at the singularity point x =0
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Prerequisite: Global regularity through Fourier coefficients

Lemma (Riemann-Lebesgue)
If fis L! then the Fourier transform of f satisfies

flw) = / f(x)e ™ —— 0

|w|—00

How fast the Fourier coefficients decrease?

For f p times continuously differentiable with bounded derivatives, since

—_—

f(w) = %%f(w) then by iterating we get f(w) = ﬁ%f(w)
~ K
f < —
)l <

with K = sup %f
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Prerequisite: Global regularity through Fourier coefficients

Conversely Fourier decay governs smoothness?
If f is L! then f € L> and f is continuous.

Proof:
X)| X 72 (§] w)|dw X 72 w)| dw “+00

which proves boundedness. As for continuity, consider a sequence y, — 0
and

~

1 .
Flx —yn) = o / ) £ (W) dw
The integrand converges pointwise to ej“’xf(w) and is uniformly bounded
in modulus by the integrable function f. Hence Lebesgue’'s dominated
convergence theorem applies and yields f(x — y,) — f(x) that is
continuity in x. O
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Prerequisite: Global regularity through Fourier coefficients

Theorem (Sufficiant condition for differentiability of f at order p)

A function f is bounded and p times continuously differentiable with
bounded derivatives if

/ F(w)|(1 + |w]P) dw < 400

— ~

Proof: Knowing that f(¥) : w s (iw)*f(w), by the inversion formula

IFR)(8)| = ‘/ ﬂk\)(w)e’mdw‘ </ F(w)] - Jw]* dw < 400
for any k < p, so f(K) is continuous and bounded. d

Corrolary. If it exists a constant K and € > 0 such that
Credits: S. Mallat (Wavelet tour)
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Prerequisite: Global regularity through Fourier coefficients

~

The decay of |f(w)| depends on the worst singular behavior of f

f(x):{ —1if —7<x<0

+oo
4 .
Hifosx<r  ~2xzn 1) @1

where f is periodized. For f = 1|_7 1] = \f(w)| = o(|lw|™1)

Credits: Wikipedia (https://en.wikipedia.org/wiki/Fourier_series)
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Wavelet zoom: Lipschitz regularity

Definition (Lipschitz regularity of order « of a function f)

Let o > 0 be the regularity parameter and xp € R.
f is pointwise Lipschitz—a at xg, if there exist C > 0 and a polynomial
P, of degree n = |a], such that

VheR, |f(xo+ h)— Py(h)] < Clh® (1)
P, is the Taylor expansion of f at xp. (If 0 < o < 1, Po(h) = f(x0))

e f is uniformly Lipschitz—a over [a, b] if f satisfies (1) for all
xo € [a, b], with a constant C independent of xg.

@ Extension to negative « (distributions): f uniformly Lipschitz—a
over |a, b[ if its primitive is Lipschitz—(« + 1) over ]a, b].

@ The Lipschitz regularity of f is the supremum of the « such that f is
Lipschitz—a.
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Lipschitz—a functions

VheR, |f(xo+ h) — f(x0)| < C|h|*

T

Figure: The schematic diagram of Lipschitz—a functions

Credits: Li-Wei Liu & Hong-Ki Hong
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Some examples

@ A Lipschitz—« function at xg, with 0 < o < 1, is continuous, but a
priori non differentiable.

@ A C! function in a neighborhood of xg is Lipschitz—1 at xp.

@ The Lipschitz regularity o with n < o < n+ 1 allows to classify
regularities between C" and C"*1.

@ A bounded function is Lipschitz—0. For example the Heavyside
function H(x) =1if x > 0 and 0 if x < 0.

@ The distribution § is Lipschitz—(—1) (as the derivative of H).
@ The function x — |x — xo|* (0 < o < 1) is Lipschitz—«
o The function /| cos(27x)| is Lipschitz—3.

f(x)
2
1
0

0 0.2 0.4 0.6 0.8 1
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Some examples

A Holder function of exponant %

fonction a analyser
1 T T T

0.8-

0.4r

0.2

0 I I I I I I I I I
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients d ondelettes

100 200 800 400 500 600 700 800 900 1000
Figure: f(x) = y/|cos(2mx)| and its CWT (modulus, Morlet wavelet, divided by +/a)
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Some examples
f(@)

a=0

0 0.2 0.4 0.6 0.8 1 b
Figure: Wavelet transform Wf(a, b) calculated with ¢ = —6’ where 6 is a Gaussian
Singularities create large amplitude coefficients in their cone influence.

Credits: S. Mallat (Wavelet tour)
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Regularity measurements with wavelets

Let o > 0 be fixed, 1) a wavelet with compact support C [—L, L], and
N > « vanishing moments:

/x”w(x) dx =0, forO<n<N
Remark: a wavelet with N vanishing moments is orthogonal to
polynomials of degree N — 1.
Polynomial Suppression. Let f Lipschitz-a at xp, that is
f(x) = Pa(x — x0) + e(x — x0)  with |e(x — x0)| < |x — x0|*

Since o < N, the polynomial Py has degree at most N — 1.
With the change of variable y = (x — b)/a, we verify that

WP,(a, b) = /_:O Pn(x)\}gw <X - b) dx =0

Then,
Wf(a, b) = We(a, b)
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Pointwise Lipschitz regularity and wavelet coefficients

Let o > 0. One consider a wavelet 1 of regularity CN, with compact
support supp ¥ C [—L, L], and N > « vanishing moments.

Theorem (Jaffard, Estimation of the local regularity of £ at point xp)
If f € L?(R) is Lipschitz—a < N at xg, then 3A > 0 such that

Conversely, if & < N is not an integer and there exist A > 0 and o/ < «
such that

b—XO

W(a,b) € R x RY, |Wr(a,b)| < A a**3 <1 N '

a

V(a,b) € R x RT, |WF(a,b)| <A a2 (1 + ‘
then f is Lipschitz-a at xg.
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Proof of
Since f is Lipschitz—« at xg, there exists a polynomial Py of degree
o] < N and C > 0 such that

[f(x) — Pn(x — x0)| < C|x — xp|®

Since ¢ has N vanishing moments, we saw that WP,(a, b) = 0, and thus

|WF(a, b)| ‘/ — Pn(x = x0)] ¥a,6(x) dx

Jorr (2

The change of variable y = X%ab gives
Wr(a.b) < Va [ Clay + b [0l dy

dx
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Proof of

o0
WH(a, b)| < /a / Cl ay +b—x|*lo(y)|dy
oo~ —~—

t s
Lemma: |t + s|* < 2%(|t|* + |s]*)
Proof: Let m = max(|t], |s|) so that |t + s| < |t| + |s| < 2m. Then,
[t +s[" < (2m)* = 2%m™ <2°([t* + [s]7) -

By the lemma,
o0

Wi(ab)| < czws(a“/ VIO dy + b — ol |w(y)|dy)

- —0o0
< KM2% 5ot (1 + ’
N——

b—XO ”>
A

with M = max ([, y|*le(n)], J°2, [9(y)ldy). O
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Cone of Influence

If supp ¢ = [—L, L], the cone of influence of xg in the time-scale space is

the set of points such that xg € supp ¥, = [b — La, b+ La], that is
M(x0) ={(b,a) e Rx R} : |b—x0| < La}

If £ is Lipschitz-a at xg, then 3A > 0, such that for all (b, a) € I'(xp):

1
|Wf(a, b)| < A a*t2
and conversely for o non integer.

v is computed by the slope of the curve loga — log |Wf(a, b)|

échelle _Chaine de
a maxima d’ondelettes
Xy ' Position
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Wavelet Transform Modulus Maxima
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Wavelet construction from the derivatives of a Gaussian

Let 6(x) = exp(—x2/0?) the Gaussian Kernel and let considered

PN(x) = 607 (x) = <d>No 2

dx

QN‘ X

The wavelet 1"V has N vanishing moments.

10 -8 6 -4 -2 3 2 4 6 8 10

Figure: The Gaussian 6 (n = 0) for 0 = 1 and its two first derivatives:
n=1is represented in (— - —) and n = 2 (the Mexican hat) in (- - -)
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Multiscale differential operator

A wavelet 1) has fast decay if
Cm

<
VmeN, 3ICp, suchthat [|¢(x)] < T+

VieR

Theorem (Multiscale differential operator)

A wavelet ¢ with fast decay has N vanishing moments if and only if
there exists 0 with a fast decay such that

ydVo

vi) = ()M ()
As a consequence
dNg «
N
V‘/Nf(a7 b) =a W(f * 93)([))

Moreover, ¢ has no more vanishing moments iff [ ¢ # 0.
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Multiscale differential operator

Example

@ The convolution f % f, averages
f over a domain proportional to
a f(v)

o If the wavelet has only one
vanishing moment: ¢ = —¢’
then Wi(a, b) = a%(f % 6,)(b)
has modulus maxima at sharp
variation points of f % 0,

s o B
o If the wavelet has two vanishing M
moment: ¢ = —6" then W, f(us) ‘ L u

2 » =
Wa(a, b) = a%(f x 0,)(b) ! 1
corresponds to locally N
maximum curvatures ! l

W, f(u,s)
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Wavelet Maxima Lines

e Point of Modulus Maximum are any point (bg, ag) in the time-scale
plan such that the curve b — |Wf(b, ag)| is locally maximum at
b = bg. This implies that
an(ao, bo) 0
b B

@ Maxima lines is any connected curve a(b) in the scale-space plane
(b, a) along which all points are modulus maxima.

Theorem (Hwang, Mallat)

Suppose that 9 is CN with a compact support and ¢ = (—1)V9(M) with
[6#0. Let f € L'[bg, by]. If there exists ag > 0 such that |Wf(a, b)|
has no local maximum for b € [bg, b1] and a < ag, then f is uniformly
Lipschitz—N on [bg + €, by — €], for any € > 0.
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Wavelet Maxima Lines

Remarks
@ This theorem implies that f can be singular (not Lipschitz—-1) at a

point xg only if there is a sequence of wavelet maxima points
(bk, ak)ken that converges toward xg at fine scales:
lim by =xg9 and lim a, =0
k—+o00 k——+o00
@ These modulus maxima points may or may not be along the same

maxima line. This result guarantees that all singularities are detected
by following the wavelet transform modulus maxima at fine scales

Theorem (Hummel, Poggio, Yuille)

Let ¢» = (—1)NO(N) where 6 is Gaussian. For any f € L2, the modulus
maxima of Wf(a, b) belongs to connected curves that are never
interrupted when the scale decreases
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Wavelet Maxima Lines

Example

|| o &l NN

|

log2(scale)
IS

o

0 50 100 150 200 250
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Example: a simple Dirac ¢

0.8

0.6

0.4

0.2

—log2(scale)

5
0

representation temporelle

0.2 0.4 0.6 0.8 1

(a) Le Dirac

Chainage des maxima

0.2 0.4 0.6 0.8 1

(c) chafnage

Kévin Polisano

250

200

150

50

200
(b)

-9.8

-10

400 600 800 1000

les coefficients d’ondelettes

chaine 1:

3 3.5

4 4.5 5

(d)  évaluation de la singularité en 0.5

Wavelets a

Applications
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Example: 2 cusps f(x) = |x — 0.25]3 + |x — 0.7]3

representation temporelle

0.5
0

0.2 0.4 0.6 0.8 1
(a) La fonction

Chainage des maxima

5
0

0.2 0.4 0.6 0.8 1

(c) chafnage

Kévin Polisano

o/ | =N

50

200 400 600 800 1000
(b) les coefficients d’ondelettes

chaine 2 et 3:

-9

-10
0 1 2 3 4 5
(d) évaluation de la singularité en 0.7 (trait continu)
et 0.25 (trait pointillé)
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Example: f(x) = |x — 0.25]3 + |x — 0.7|34noise (SNR=0.01)

representation temporelle

2 250 \S
15 200 / (
150
y
100
0.5
50
0
0 0.2 0.4 0.6 0.8 1 200 400 600 800 1000
(a) La fonction (b) les coefficients d’ondelettes
Chainage des maxima chaine 2 et 3:
0t 2 4
—3 N
1 \
\ / /4 | -5
I~ /
% 2 ) /8 6
@ § { / 7\ { "
) ’ 1 1 10
g3 \ 13
T r 14 \ 1 |
191921 | 24 j1 PP 7
glifi | gt )
il it
\ |
Jlasl L] W sle
0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5
(c) chainage (d) évaluation de la singularité en 0.7 (trait continu)

et 0.25 (trait pointillé)
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Practical estimation of «

f is uniformly Lipschitz—« in the neighborhood of xq iff there exists
A > 0 such that each modulus maximum (b, a) in the cone satisfies
1

|Wf(a, b)| < Aa*tz

which is equivalent to

1
log,|Wf(a, b)| < log,A + <a + 2) log,a

= The Lipschitz regularity at xg is the maximum slope of log,|Wf(a, b)|

as a function of log,a along the maxima lines converging to xp
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Practical estimation of «

Example

W logalWf(u,s)!

#1111 -3

-4

2
3
4

-5 -

o

3
g

|
o))

_ logao(s
7 3 g2(s)

Figure: The full line gives the decay along the maxima line that converges to
the first jump, and the dashed line to the first cusp.
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Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

Properties

Independants
displacements

@ Gaussian distribution

Irregular trajectories
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Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonami Eslrade
1828 1905 1923 1940 1968 1995

Independants displacements

Irregular trajectories .
€ ) Gaussian distribution
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Brownian motion

Brown Einstein Wiener Kolmogorov  Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995
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Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonami-Estrade
1828 1905 1923 1940 1968 1995 2003

Brownian motion

@ (B:): has independants I~ ,
increments, Bg = 0 a.s.

°Bti_BijNN(07ti_tj)
@ (B:): has continuous sample |
paths a.s. e

(Ax)2 o t
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Brownian motion

Brown Einstein Wiener Kolmogorov  Mandelbrot Kamont Bonaml Esl ade
1828 1905 1923 1940 1968 1995

Isometry W : (L%, {f, g),2) = (G,E[XY])
o E[W(F)W(g)] = (f, g)12, WI(F) ~N(0,|fl72)
o Ve (0,1, B W(lpy)

o E[(B:— Bo)?] = |1 — Lo 72 = /]Hs,t] =t-s

o E [(Bt:’ - Bfi—l)(Btj - Btj—l)} = <]l[ti717ti]’]l[tj—1atj]>L2 =0

Wiener stochastic integral = /f(x)W(dx)
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Self-similarity

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

Self-similarity
{X(t)}teT self-similar of order H if

VA ER, {(X(M)}er A X (8)} e r

Kévin Polisano Wavelets and Applications 127/133



Self-similarity

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonami-Estrade
1828 1905 1923 1940 1968 1995 2003

Self-similarity
{X(t)}teT self-similar of order H if

VA ER, {(X(M)}er A X (8)} e r
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Self-similarity

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

Self-similarity
{X(t)}teT self-similar of order H if !

(fdd) )
VA € R, (XA} eer & A (X ()} eer
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Fractional Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

o E[(BA(t)— BH(s))?] = |t — s]*M = indpt—inerements

H=02 H=05 H=0.38

Figure: Fractional Brownian motion B/
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Fractional Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

E[(B"(t) - BH(s))*] = |t — s

H=02 H=05 H=0.38
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Fractional Brownian motion

Brown Einstein Wiener Kolmogorov  Mandelbrot Kamont Bonaml Esl ade
1828 1905 1923 1940 1968 1995

E[(BM(t) - B(s))?] = |t —s]*" =
o R(t,s) = Cov(BM(t), BH(s)) = (> + " — |t — s|*")

H=02 H=05 H=0.38

Kévin Polisano Wavelets and Applications 129/133



Fractional Brownian motion

Brown Einstein Wiener Kolmogorov  Mandelbrot Kamont Bonaml Esl ade
1828 1905 1923 1940 1968 1995

E[(BM(t) - B(s))?] = |t —s]*" =
o R(t,s) = Cov(BH(t) BH( ) = 3(t2H 4+ s2H — |t — s|?)

jtg
o BH(t)=2 [, \zf”“/lz ) =

H=02 H=05 H=0.38
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Fractional Brownian field

Brown Einstein Wiener Kolmogorov  Mandelbrot Kamont  Bonami-Estrade
1828 1905 1923 1940 1968 1995 2003

o E[(BH(x) - BY(y))?] = |x — y[?", x.y € B?
o R(x.y) = & (X" + ly[[2# ~ |1x — y|PM)

QI &) _1vnT
o BH(x) = & fio St W(dg)

Kévin Polisano Wavelets and Applications
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Wavelet-based estimation of the Hurst exponent

@ Let us consider a discrete wavelet transform at scales a = 2~/ and
positions b = k
P u(x) = 272279 x — k)
which encodes series information in details

di = (B, ;)

@ Compute wavelet variance

Var Z ’ _jk|2

N =0

@ Plot the log, of variances versus scale j

logy(Var(dje)) = (2H + 1)) + cste
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Wavelet Maxima Lines for Brownian motion

log,s

(q) D(a)

4 -

3 1

2 0.9

1 0.8

0

0.7
_10" q o
2 4 0.65 07 0.75 (d)

Credits: S. Mallat (Wavelet tour)
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Take home message

@ Vanishing moments up to order N make the wavelet 1 blind to
polynomial of degree < N (smooth part of the signal), leading to
better detections of singularities

@ If the function is Lipschitz—a, then the amplitude of the wavelet
coefficients are going to decay very fast to zero when the scale goes
to zero (all the more that « is high)

@ A remarkable aspect is the reverse: if we know this property, then we
can characterize the pointwise regularity of the function at any point

@ All singularities are detected by following the wavelet transform
modulus maxima at fine scale

@ The Lipschitz regularity at every point can be retrieved by measuring
the maximum slop of the decay of log,| Wf(a, b)|

@ The wavelet-based estimation of the Lipschitz regularity enables to
recover the self-similarity exponent of fractals
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