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Introduction: from Fourier to Wavelets

The 1D Continuous Wavelet Transform

Woavelet zoom: a local characterization of functions

Labl: 1D Continuous Wavelet Transform

The 2D Continuous Wavelet Transform

Wavelet Bases (Haar, multiresolution, orthogonal wavelet bases)
Fast Wavelet Transform (the 1D and 2D cases)

Lab 2: Fast Wavelet Transform, image compression and denoising
Approximation in wavelet bases (sparsity, compression, denoising)

Application 1: The dual-tree complex wavelet transform and the
scattering transform for deep learning

Application 2: Introduction to wavelets on graphs
Lab 3: Dedicated to the project
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Course evaluation

@ 2 lab sessions using the library PyWavelet (results to be sent by
email)

@ Examination. 1 project consisting on:
e Choosing a research article using wavelets for a given application.
e Reading and understanding the article, writing a summary of what
you expect to implement (due to December 9th).
e Practical work: implementation of the method presented in the
article (Matlab or Python).
e Writing a report including figures of results.

© Ensimag students must form pairs for lab sessions and the
project (precise both your names on the summary)
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Course materials

Books

e S. Mallat, A wavelet tour of signal processing,
Academic press, third edition, 2009.

o P. Flandrin, Explorations in Time-Frequency Analysis,
Cambridge University Press, Cambridge (UK), 2018.

@ J-P. Antoine, R. Murenzi, P. Vandergheynst and S.T. Ali,
Two-dimensional Wavelets and Their Relatives,
Cambridge University Press, Cambridge (UK), 2004.

awavelet

tour
of signal processing Tlme—Frequency
The Sparse Way AnalySIS

PATRICK
FLANDRIN
Two-Dimensional

Wavelets
and their Relatives
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Course materials

Links
e Wavelab (free Matlab toolbox)

http://www-stat.stanford.edu/ ~wavelab/
e A numerical tour of Signal/lmage Processing (by Gabriel
Peyré)

http://www.numerical-tours.com/

e PyWavelets (python)

https://pywavelets.readthedocs.io/
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Introduction
From Fourier to Wavelets
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What is a wavelet?

Examples of waves
o Electromagnetic wave
@ Radio wave
@ Microwave

@ Sound wave

Wavelet = "short wave"'

cos(x) , sin(x)

-1.0F

sinusoidal waves wavelet
Credits: Valérie Perrier
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A success story

® Wavelets for Data representation

® Wavelets for numerical simulation

ety

N

Divergence-free wavelet Direct Simulation of Turbulence

Credits: Valérie Perrier
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A success story

WEQ Comorassidn

WSQ (1993) is the FBI's Wavelet Scalar
Quantization: it is a national standard for
the collecting, encoding, storing, and
retrieving digitized fingerprint images.

JPEG 2000 is an image coding
system that uses state-of-the-art
compression techniques based
on wavelet technology.

Academy Sci-Tech Award 2013
Awarded to Theodore Kim, Nils Thuerey,

Dr. Markus Gross and Doug James for the
invention, publication and dissemination of
“Wavelet Turbulence” software.

Credits: Valérie Perrier

Kévin Polisano Wavelets and Applications



A success story

> Abel Prize (2017) : Yves Meyer,
for his pivotal role in the
development of the
mathematical theory of wavelets.

” Wavelet analysis has been applied in a wide variety of arenas as
diverse as applied and computational harmonic analysis,

data compression, noise reduction, medical imaging, archiving,

digital cinema, deconvolution of the Hubble space telescope images, and
the recent LIGO detection of gravitational waves created by the
collision of two black holes.”
[http://www.abelprize.no/]

The Abel Lecture (Yves Meyer)

www.youtube.com/watch?v=wxmzHwd3z34

Wavelet theory helped LIGO to detect gravitational waves.
Credits: Valérie Perrier
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Gravitational waves detection

Credits: LIGO (http://www.black-holes.org/gw150914)
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Gravitational waves detection

LIGO - A GIGANTIC INTERFEROMETER

GRAVITATIONAL WAVE BLACK HOLE SPACETIME

MIRROR

A “beam splitter” splits the
light and sends out two
identical beams along the
4 km long arms.

4

Laser light is sent into
the instrument to
measure changes in
the length of the two
arms

-»XXX)

The light IRROR

waves bounce
and return

A gravitational wave affects the
interferometer’s arms differently;
when one extends the other contracts.
as they are passed by the peaks and
troughs of the gravitational waves

Normally, the light returns unchang-
ed to the beam splitter from both
arms and the light waves cancel
each other out.

CANCEL EACH

LIGHT WAVES
OTHER OUT

BEAM SPLITTER  LIGHT DETECTOR

If the arms are disturbed by a

gravitational wave, the light waves - W ;f:;;’::ﬁ;g“um

will have travelled different distan-
ces. Light then escapes through the  BEAM SPLITTER  LIGHT DETECTOR
splitter and hits the detector.

Credits: LIGO (http://directory.eoportal.org/web/eoportal/satellite-missions/1/ligo)
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Gravitational waves detection

Analytic wave form derived from Einstein’s equations (Thibault Damour et al.)

Inspiral Merger Ring-
down

£ sisce

1.0
0.5
0.0 |-

Strain (1072%)

-1.0 = Numerical relativity
B Reconstructed (template)
T T

1 5
s(t) = c|t — to] 4cos(w|t — to|s+¢)
with ¢, w, ¢ and ty are constants (tp = time when the stars are
Cr@ﬂQEgmg) Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger
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Gravitational waves detection

Hanford, Washington (H1) Livingston, Louisiana (L1)
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Credits: B.P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger
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Gravitational waves detection

>

>

Credits:

Gravitational waves are perturbation of the space-time metric,
predicted by Einstein and steadily sent to the Earth

Gravitational waves, produced during the final fraction of second of
the merger of two black holes into a single, are chirps like a
modulated song of a bird, which are very tenious (noise/signal>10%)
Pattern detected by the 2 arms of an interferometer, separared by
3000km and 4km long, use laser lights and distant mirrors to be
sensitive to derformations smaller than 10~ °m (1)

Detecting a short-lived chirp burried inside a very noisy signal
cannot be extrated by Fourier analysis (adapted to stationary
signals)

Wavelet analysis extends and overcomes Fourier limitation by
exploring the time-frequency / time-scale structure of the data. It
explores what is beyond our senses by yielding details that cannot
be perceived by our eyes (it acts like a "zoom")

Abel lecture (Yves Meyer)
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Gravitational waves detection

Klimenko's algorithm: Coherent Wave Burst

» Projection on bases of functions reasonably localized in time and
frequency: Wilson transforms (modification of Gabor transforms)

» The window can be Meyer scaling function. The signal processing is
performed on 7 Wilson bases (and their quadrature bases) each
obtained by a dilation of factor 2 of the window

» Several decompositions at different time scales. Inspiral requires
good frequency resolution, merger requires good time resolution:
compromise between time frequency and time scale analysis

» Retain time-frequency pixels that are “phase coherent”. Can detect
unexpected sources. Fast and robust algorithm.

Meyer wavelets

1 scale=8
0.8 —scale=64
06
04+ scale=512
021 1

oF $
4
044 6 5 6 o>5 1

time (s) 4@

Credits: Eric Chassande-Mottin
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Gravitational waves detection

Klimenko's algorithm: Coherent Wave Burst

Search for rare transients with low signal to noise ratio. Two ways:
» Matched filtering. Expected signal is known, targeted search
signature of binary black-hole merger as predicted by general
relativity
» Time-frequency excess power. Expected signal is unknown,
search transients appearing in phase in all detectors with no
waveform prior (general relativity not needed)

Time (sec)

Y. Meyer & S. Klimenko Non-parametric search
Credits: Yves Meyer & Eric Chassande-Mottin

17/291
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Gravitational waves detection

Physical

device

Reconstruction

Wavelet analysis
explores beyond
our senses

Hanford H1

raw data
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During thewave| o 10
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Beams out of step 0.5
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Transient signals Klimenko’s
extraction algorithm
GRAVITATIONAL WAVE
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time, lengthening (in this example) the light’s path
along arm 2; when the beams recombine and arrive B
at the detector, they are no longer in step.
T
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Meyer wavelets
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Credits: S. Klimenko et al., arXiv:1511.05999 + The economist
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A new window on the universe

‘ ‘ It's like Galileo pointing the telescope for the first time at the sky.
You're opening your eyes — in this case, our ears — to a new
set of signals from the universe that our previous technologies

did not allow us to receive, study and learn from. , ,
Vassiliki Kalogera

( ‘ Up until now, we've been deaf to gravitational waves. What's
going to come now is we're going to hear more things, and no
doubt we'll hear things that we expected to hear... but we will
also hear things that we never expected. , ,

David Reitze

‘ ‘ Writing the score while listening to the music, then analyzing
and interpreting the score, is, in a sense, what Klimenko does

to detect gravitational waves. , ,
Yves Meyer
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From the music of the spheres to the chirp of black holes

A small detour through old cosmology to meet Fourier

Back to the time of Ptolemy...
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Who Wants to Be a Millionaire?
A pre-Copernican TV show

@asLan

Credits: "Qui veut gagner des millions" (http://www.youtube.com/watch?v=ekmtqODjrSl)
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The first heliocentric model by Aristarchus of Samos
Extract from The Sand Recknoner, Arenarius (Archimedes, c. 230 BC)

“ You are now aware that the "universe" is the name given by most
astronomers to the sphere, the centre of which is the centre of the
earth, while its radius is equal to the straight line between the centre
of the sun and the centre of the earth. This is the common account
as you have heard from astronomers. But Aristarchus has brought
out a book consisting of certain hypotheses, wherein it appears, as a
consequence of the assumptions made, that the universe is many times
greater than the "universe" just mentioned. His hypotheses are that
the fixed stars and the sun remain unmoved, that the earth revolves
about the sun on the circumference of a circle, the sun lying in the
middle of the orbit, and that the sphere of the fixed stars, situated
about the same centre as the sun, is so great that the circle in which he
supposes the earth to revolve bears such a proportion to the distance , ,
of the fixed stars as the centre of the sphere bears to its surface.

Archimedes

Credits: Sir Thomas Heath, Aristarchus of Samos, the ancient Copernicus (1913)
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Three competing models of the solar system
Ptolemy, Copernic and Tycho-Brahe models
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Heliocentrism versus Geocentrism

Heliocentrism Geocentrism

Remark: not realistic (the Copernican model is much more complex), it just
serves to illustrate the relativity of motion.

Credits: Malin Christersson (http://www.malinc.se/math/trigonometry/geocentrismen.php)
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Mars apparent retrograde motion

Credits: Tunc Tezel & Robert Rynasiewicz
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Mars apparent retrograde motion

‘ ‘ If anyone were to believe that the sun truly moves in the space of a year
through the zodiac, which Ptolemy and Tycho Brahe believed, then
it is necessary to concede that the paths of the three superior Planets
through ethereal space, composed as they are of several motions, are
in reality spirals in the figure of a pretzel, in the general fashion that , ,

follows.
Johannes Kepler

Kévin Polisano Wavelets and Applications



Mars apparent retrograde motion

Credits: Wikipedia (https://en.wikipedia.org/wiki/Apparent_retrograde_motion)
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https://en.wikipedia.org/wiki/Apparent_retrograde_motion

Spirograph

Credits: Wikipedia (http://en.wikipedia.org/wiki/Spirograph)
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Epicycles

. Epicycloide

@

' ® Pointn'2

Credits: El Jj (http://www.youtube.com/watch?v=uazPP0Ony3XQ)
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Roots of epicycles: from Hipparque to Kepler

>

>

Credits:

Hipparque's epicycles theory based on Apollonius of Perga’s
works (at the end of the 3rd century BC) + Seleucus of Seleucia

Ptolemy refined the deferent-and-epicycle concept and introduced
the equant as a mechanism for accounting for velocity variations in
the motions of the planets

Copernicus and his contemporaries were therefore using Ptolemy's
methods and finding them trustworthy well over a thousand years
after Ptolemy’s original work was published

In keeping with past practice, Copernicus used the
deferent/epicycle model in his theory but his epicycles were small
and were called epicyclets

Copernicus eliminated Ptolemy's somewhat-maligned equant but
at a cost of additional epicycles. Various 16th-century books based
on Ptolemy and Copernicus use about equal numbers of epicycles

Wikipedia (http://en.wikipedia.org/wiki/Deferent_and_epicycle)
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Heliocentrism versus Geocentrism

Heliocentrism

ristarchus icholas Copernicus Roman Catholic Church
rchimedes ohannes Kepler
Galileo Galilei
Isaac Newton
Xedrch Bessel
-40 -200 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Ptolemy cho Brahe
ristotle o Roman Inquisition
Geocentrism

Credits: Malin Christersson (http://www.malinc.se/math/trigonometry/geocentrismen.php)
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Heliocentrism versus Geocentrism

Why wasn't the heliocentric model capable of replacing the geocentric one?

|

Heliocentrism

I

Geocentrism

Explains retrograde motion
Smaller epicycles used and
avoiding the equants
== Good accuracy for determining
(mostly) planets location
== Circular and uniform motions
—— Fails to explain the divergence
of Mars to observations
—— Movements of the Earth around
the sun and on its axis contradict
some observations (parallax, stars
size, stability, ...)
—— Philosophical breakthrough: the
Earth is not a unique body anymore,
which contradicts both Aristote and
biblical arguments

—— Cannot
—— Atrtificial equants used for dif-
ferences of velocities observed
== Good accuracy for determining
(mostly) planets location
== Circular and uniform motions
—— Fails to explain the divergence
of Mars to observations
Earth is stationary. Tycho
Brahe proposed a mixed model
called geoheliocentric observing def-
erents of Mars and the Sun crossing.
Philosophically compliant with
Aristote's  conception of sublu-
nary/aether distinction and with
holy scriptures

Kévin Polisano

Wavelets and Applications
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The Paradigm shift: Kepler, Galileo and Newton
discoveries

Newton standing on the shoulders of giants

» The intellectual climate of the time "remained dominated by
Aristotelian philosophy and the Ptolemaic astronomy. At that time
there was no reason to accept the Copernican theory, except for its
mathematical simplicity." Tycho Brahe's system ("that the earth is
stationary, the sun revolves about the earth, and the other planets
revolve about the sun") also directly competed with Copernicus.

Credits: Wikipedia (http:}(/eelr)ml.%rikipedia.org/wilﬁ?“ligglaus_CopernicugeWton
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http://en.wikipedia.org/wiki/Nicolaus_Copernicus

The Paradigm shift: Kepler, Galileo and Newton
discoveries

Newton standing on the shoulders of giants

» Johannes Kepler developed his laws of planetary motion using
measurements made at Tycho's observatory. In Astronomia nova
(1609), Kepler made a diagram of the movement of Mars in
relation to Earth if Earth were at the center of its orbit, which shows
that Mars'orbit would be completely imperfect and never follow
along the same path. To solve the apparent derivation of Mars'orbit
from a perfect circle, Kepler derived both a mathematical
definition and, independently, a matching ellipse around the Sun to
explain the motion of the red planet. Kepler's laws were born.

Tycho Brahe's Mars Observations

Credits: Wayne Pafko p://www.pafko.com/tycho/obser
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The Paradigm shift: Kepler and Galileo discoveries

Newton standing on the shoulders of giants

» Galileo was able to look at the night sky with the newly invented
telescope. He published his discoveries that Jupiter is orbited by
moons and that the Sun rotates in his Sidereus Nuncius (1610)[93]
and Letters on Sunspots (1613), respectively. Around this time, he
also announced that Venus exhibits a full range of phases
(satisfying an argument that had been made against Copernicus).
Finally he discovered that the moon presents mountains, valleys and
craters which depreciates the Aristotelian conception.

Ptolemaic universe Copernican universe

™ Centerof

)

epicycle

Credits: Pierce Wilcox
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The Paradigm shift: Kepler and Galileo discoveries

Newton standing on the shoulders of giants

» Galileo was able to look at the night sky with the newly invented
telescope. He published his discoveries that Jupiter is orbited by
moons and that the Sun rotates in his Sidereus Nuncius (1610)[93]
and Letters on Sunspots (1613), respectively. Around this time, he
also announced that Venus exhibits a full range of phases
(satisfying an argument that had been made against Copernicus).
Finally he discovered that the moon presents mountains, valleys and
craters which depreciates the Aristotelian conception.

» Galileo formulated the principle of inertia which helped to explain
why everything would not fall off the earth if it were in motion.

» Isaac Newton formulated the universal law of gravitation and the
laws of mechanics in his 1687 Principia, which unified terrestrial and
celestial mechanics, was the heliocentric view generally accepted.

Credits: Wikipedia (http://en.wikipedia.org/wiki/Heliocentrism)
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Why was Ptolemy’s system so efficient?
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Credits: Joshua Hershey & Universe Today
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Because of that...

Credits: Carman & Serra (http://www.youtube.com/watch?v=QVuU2YCwHjw)
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or more exactly thanks to him: Joseph Fourier

Just like Mr Jourdain speaking prose, astronomers made Fourier series without realizing it

Credits: 3bluelbrown (http://www.youtube.com/watch?v=-qgreAUpPwM)
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Fourier series: an intuition behind the decomposition

Periodic signals can be decomposed onto the Fourier basis

Credits: 3bluelbrown (http://www.youtube.com/watch?v=r6sGWTCMz2k)
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Draw me a (light weight) elephant

The fewer parameters the better

e 1Last Woed Drawing an o Jphant with fourcomplex parameters

Least Square Fitting
of an Elephant

o

“ With four parameters | can fit an elephant, and with five | can make ,,
him wiggle his trunk.
John von Neumann

Credits: El Jj (http://www.youtube.com/watch?v=uazPPOny3XQ)
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Fourier series: is it only useful for drawing?

How Joseph Fourier solved the heat equation

Temperature
1) Sine = Nice TL\ £\

L]

i

2) Linearity

3) Fourier series

Credits: 3bluelbrown (http://www.youtube.com/watch?v=r6sGWTCMz2k)
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Fourier series analysis

The Fourier analysis decomposes a signal (function) f(x) (x =times)
into a sum of sinusoidal functions:

e For a T-periodic function f, with f € L2(0, T):

f(x) = Z cn(F)e? ™ 7% (synthesis)
neZ

where the Fourier coefficients are:
1 T —2imtZx :
cn(f) = —/ f(x)e =" 7*dx (analysis)
T Jo
are related to the frequency &+ (in Hz).

Parseval equality:

-
Z\cn(f)lzz }I'/ |f(x)[?dx (energy conservation)
neZ 0
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Fourier series limitations

Discontinuities require a lot of sinusoids to be described

—1if —7<x<0 X 4 .
f(X)_{+1if0<X<7T —’;msm(Qn—l)x)

Credits: Wikipedia (https://en.wikipedia.org/wiki/Fourier_series)

Kévin Polisano Wavelets and Applications
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Fourier transform

@ For a function f € L2(R):
+oo .
f(x) = / f(r)e*™>dv  (synthesis)
where the Fourier transform of f is:

~ +oo .
P(v) = / F(x)e 2™ dx  (analysis)

—00

gives information on f for the frequency v.

Plancherel-Parseval equality:

+oo +oo
/ |F(v)|?dv :/ |f(x)|?dx (energy conservation)

—0o0
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Fourier transform: an intuition behind the transformation

aperiodic signals can also be decomposed onto the continuous dictionary of exponentials

3 4
Frequency

Credits: 3bluelbrown (https://www.youtube.com/watch?v=spUNpyF58BY)
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Fourier Transform visualization

Wrap the signal around a circle

5 Beats/Second Signal

L N
i’% “ N — l t *ZTL'I:ftk
g(f) = gtye
N
i - - - ‘ ‘ k=1
Timelt To find the energy at a particular
frequency, the signal is wrapped around
) ; a circle at the particular frequency and
£ i 52 the points along the path are averaged.
E E i:/—/\/\/vvv\m
IR R

Credits: Elan Ness-Cohn
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Fourier transform limitations

Example: two musical notes played at the same time

representation temporelle
2 T T T

1

2 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

representation frequentielle
0.5 T T T

0.4r B

0.3 4

0.2 B

I I I I I
0 100 200 300 400 500 600

Figure: Signal f(x) = sin(40mx) + sin(1707x) (top), and modulus of its Fourier
Transform f(v) (buttom)
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Fourier transform limitations

Example of two musical notes played one after the other

The frequency analysis do not inform on the transient phenomenon in
the signal = Loss of temporal localization

representation temporelle

ll
|

1

0.5 0.6 0.7 0.8 0.9 1
representation frequentielle

0.3F

0.2r

0.1r

00 300 400 500 600
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Fourier cat transformation

H;, Dr Elfzabe'l'h?
Yech vh.. T aco:dcnmb teok
-H\e gur[@f transfecm of My Cd"

@ Meaw

0‘

Credits: xkecd #26
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Take home message

To sum up

@ Periodic functions (as planets motion along closed orbit) can be
approximated by epicycles, that is by Fourier series.

o Fitting data do not necessarily mean that the mechanics behind is
understood, and saving the phenomena can lead to a kind of
overfitting. What is a good model or a good theory?

@ The relativity of motion makes possible to consider different
coordinate systems to describe trajectories. Something which is well
known by physicists: the choice of the frame of reference can
greatly simplify mathematical calculations.

@ An appropriate representation of the signal can also reduced the
number of parameters needed to encode its information.

= Toward a sparse representation of signals

Kévin Polisano Wavelets and Applications



Take home message

To sum up

@ Fourier series decomposition allowed Joseph Fourier to solve partial
differential equations (heat equation).

@ Extension to the Fourier transform for aperiodic signal also reveals
the frequency contents of the signal, but suffer of the same issues:

@ Discontinuities involve a lot of significant coefficients in the
decomposition, whose the decrease in amplitudes encodes the
global regularity of the signal.

@ Losing the temporal localization, the Fourier transform does not
allow to capture transient phenomena in the signal.

= Toward a time-frequency representation of signals
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The Continuous Wavelet Transform
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Short Time Fourier Transform (STFT)

Multiplication of the signal f(x) by a window w(x — b) (real and of size
ap) and computation of the Fourier transform of this product:
+0o0o
SF(v, b) = / FO)w(x — b)e 2™ dx
—0o0
where b represents time and v frequency. f can be recovered from its
STFT coefficients:

f(x)= Gy jf Sf(v, b)w(x — b)e2i7rz/x dvdb
R2
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Special case: the Gabor Transform

@ In the Short Time Fourier Transform

00 ,
SF(v.b) = [ Flwlx — bl dx = (£, 1,0)
the analyzing functions are:
wu,b — W(X . b)e2i7r1/x
@ In the Gabor transform (1946) the window w is a Gaussian of scale
o w(x) = %efﬂ(gy and the Gabor functions are then (o = 1):

7(x—b)? e2imrXx

8v,b = e

(c)v=15
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Short Time Fourier Transform

Example of two musical notes

The time-frequency analysis allows to recover both frequencies (the
notes) and temporal information (the temporal order) of the signal f:

fonction a analyser

04 05 06 07 08 09 1

coefficients Fourier Fenetre

200
300

400

500
10 20 30 40 50 60 70 80

Figure: Time-frequency plane with b on the x-axis and v on the y-axis,
representing the density energy |Sf(v, b)|?>= |(f, g, »)|* called the spectrogram.
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Short Time Fourier Transform

Analogy with music scores: an example with a piano

' §

Credits: Patrick Flandrin, "Au-dela de Fourier, un monde qui vibre" (interstices.info)
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Heisenberg boxes

Time-frequency localization and spread

geb(t) = w(t — b)e™™t +— g p(w) = W(w — &)e B0
= [ bPlgs(Pr= [ Rw(oae

1 fo 1 [ .
0 = o | (= Plges)Pdo = o [ WPl@(e) P

@) i
§ - + | i
! lgea (o) 10,0
0 /\b /‘E\ t
b c
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Heisenberg boxes

Example: Gabor limits

as00) w00
4000) - 000

-
g I

© 2500
:

(o
o

fr

temps t

9s,£(t) = w(t — s)ed2rft

w(t) = (71.02)71/4642/202

temps t

Credits: Pierre Chainais, "De la transformée de Fourier a I'analyse temps-fréquence bivariée"
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Heisenberg boxes

Time-frequency localization and spread

Credits:

Can we construct a function f, with an energy that is highly
localized in time and with a Fourier transform f having an energy
concentrated in a small-frequency interval?

To reduce the time spread of f, we can scale it by a < 1, while
keeping its total energy constant:

G == (5). 161117

The corresponding Fourier transform is dilated by a factor 1/a:
fo(w) = Vaf(aw)

So we lose in frequency localization what we gained in time.
Underlying is a trade-off between time and frequency localization.

S. Mallat (Wavelet tour)
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Heisenberg's indeterminacy relations

Defining the average location and frequency respectively by:

1 o0 1 o
b:—/ t|£(t)|2dt, :7/ w[f(w)[Pdw
e )P 6= s [ wlf)

The variances around these average values are respectively:

1 /oo 1 /oo .
2 2 2 2 2 2
0 = 5 t—b)*|f(t)|°dt, o), =-—=5 w—E&)°|f(w)|"dw

—0o0

Theorem (Heisenberg's indeterminacy relations)

The temporal variance and the frequency variance of f € L2(R) satisfy

Ot 0w 2

N =

This inequality is an equality iff 3(b, &, c1, c2) € R? x C? such that

f(t) _ Clcift—q(t—b)2
Credits: S. Mallat
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Heisenberg's indeterminacy relations

Proof (Weyl): this proof supposes that lim¢_, o Vtf(t) = 0 (*) but the
theorem is valid for any f € L2(R). The average time and frequency location of
e Stf(t + b) is zero. Thus, it is sufficient to prove the theorem for b = ¢ = 0.

Since f//(?)(w) = iw?(w), the Plancherel identity applied to iw?(w) yields

0202 = W (/O;|t f(t)|2dt) </Oo |f’(t)|2dt) ()

— 00

Schwarz's inequality and the assumption (k) [for the last equality] imply

© 2 z+z*

o202 > |f1||4</ |tf’(t)f*(t)|dt> vz € C, [2f> Re(z) = 24
o 2
> Hf1||4 (/ (f’(t)f*(t)+f’*(t)f(t))dt>

1 > »v .\ IBPF 1 ) 1

ShGE (/ of('“”"dt> T (/oo“”' ‘“) =2

Credits: S. Mallat (Wavelet tour) (IBPF = Integration By Parts Formula)
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Heisenberg's indeterminacy relations

Proof: To obtain an equality, Schwarz's inesquality applied to (#*) must be an
equality. This implies that there exists ¢; € C such that

f'(t) = —2c1tf(t)
Thus, there exists ¢; € C such that
f(t) = et
When b # 0 and £ # 0 a time and frequency translation yield the result.

Remark: motivated by quantum mechanics, Gabor proposed time-frequency
atoms that have a minimal spread in a time-frequency plane. By showing that
signal decompositions over the dictionary of Gabor atoms are closely related to
our perception of sounds, and that they exhibit important structures in speech
and music recordings, he demonstrated the importance of localized

time-frequency signal processing.
R '\’F
%ﬁﬁfw wﬁﬂw»

7 E ?d —Time h l “Z
Credits: S. Mallat (Wavelet tour)
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Heisenberg's indeterminacy relations

Some intuitions behind

Signal

Long duration observation
A

FEINTTNNAND

Time

Al v
. P S o
High confidence b el

2 Frequency

TF(f - Mi-a/2,0/2) = TF(F) % TF(N[_a/2,a/2) = TF(F) * asinc(ra-)

Credits: 3bluelbrown (http://www.youtube.com/watch?v=MBnnXbOM5S4)
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Heisenberg's indeterminacy relations

Some intuitions behind

ANVANVA
VARV

A\

A

5514.4

”\/\

VARV

Figure: Improved frequency measurement over longer time intervals. The
uncertainty in the frequency Af decreases as the measurement interval At
increases, and vice versa.

Credits: Bruce MacLennan (Gabor Representation)

Kévin Polisano Wavelets and Applications

63/291



Heisenberg's indeterminacy relations

o o
A NN
VARVARY

At

Figure: Measuring frequency by counting maxima in a given time interval. The
circled numbers indicate the maxima counted during the measurement interval
At. Since signals of other frequencies could also have the same number of
maxima in that interval, there is an uncertainty Af in the frequency.

Credits: Bruce MacLennan (Gabor Representation)
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Heisenberg's indeterminacy relations

Some intuitions behind

56

A A A
M\)U\/\)U Y,

Figure: Minimum time interval At to detect frequency difference Af. If two
signals differ in frequency by Af, then a measurement of duration At > 1/Af
is required to guarantee a difference in counts of maxima. (Italic numbers
indicate maxima of signal of frequency f, roman numbers indicate maxima of
signal of higher frequency f + Af)

(F+ANAt—fAt>1 & Af At >

Credits: Bruce MacLennan (Gabor Representation)
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Short Time Fourier Transform

Examples

Q A sinusoidal wave f(t) = e/“t whose Fourier transform is a Dirac
f(w) =27d(w — &) has a STFT:

SF(&,b) = w(& — o)e P
Its energy is spread over the frequency interval

€ lo—0w/2,6 + 0,/2]

@ A Dirac f(t) = 0(t — bp) has a STFT:
Sf(&,b) = w(b — by)e b
Its energy is spread in the time interval

be [bO*Ut/2,bo+Jt/2]
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Limitation of the Short Time Fourier Transform

The STFT cannot separate events of a distance smaller than ag, that is
to localize the two frequencies and the transient phenomena.

fonction a analyser
T T T

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients Fourier Fenetre

10 20 30 40 50 60 70 80

Figure: Signal f, = f; + 01 + J> and its Gabor transform with ag = 0.05
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Limitation of the Short Time Fourier Transform

The STFT cannot separate events of a distance smaller than ag, that is
to localize the two frequencies and the transient phenomena.

fonction a analyser

0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients Fourier Fenetre

200

300

400

100 200 300 400 500 600 700 800

Figure: Signal f, = f; 4+ 01 + d» and its Gabor transform with ag = 0.005
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Pioneer works on wavelets

o Jean Morlet research engineer at ELF Aquitaine discovered
wavelets for solving signal processing problems arising from oil
exploration.

@ Alex Grossmann recognized in the Morlet wavelets something
similar to coherent states formalism in quantum mechanics and
developed an exact inversion formula for the wavelet transform.

@ They developed the mathematics of the continuous wavelet
transforms in their article: "Decomposition of Hardy Functions into
Square Integrable Wavelets of Constant Shape" (1984)

mann capn \/lAQrle
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"Gaborettes" vs Morlet wavelets

1/a = frequency

high

medium

low

lpb,ﬂ (t)

a<1l

a>1

t
Figure: (Left) Gabor 1y, 4(t) = e/t/29(t — b), (right) Morlet 1, ,(t) = a=1/2¢ (%)

Gabor = frequency modulation inside a constant window width
Wavelets = shape of v, , doesn’t change, simply dilated or compressed
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The Continuous Wavelet Transform (CWT) — Definition

Wrf(a, b) = /+oo f(x)ap(x)dx = (f,byp), a>0, beR

—00

The analyzing functions or wavelets are defined by:

s = L o(222)
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Wavelet family in physical space

Example: the Morlet wavelets

-
vasl) = 7=0(*57) \\\

¥(x) = cos(x)e 107’

with mother wavelet

(a) a=1/2 (b)a=1 (c)a=2

Figure: Morlet wavelets of scale: a=1/2, 1, 2 (real part) The scale a gives

Kevm Pollsano Wavelets and Appllcatlons



Wavelet analysis of the toy signal with Morlet wavelets

fonction a analyser
T T

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients d ondelettes

100 200 300 400 500 600 700 800 900 1000

Figure: Signal f, (two notes + scratch) and its CWT
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Wavelet definition

A function (x) € LY(R) N L?(R) is a wavelet if it satisfies the following
admissiblity condition:

C, — /'+°C ‘/l/j(lf)

J—o0 v

2

dr < o

which implies [T2°4(x) dx = 0 (and this is equivalent if x¢) integrable).

Examples
@ The (complex) Morlet wavelet

o Mother wavelet: t)(x) = e~ ™ 107

e lts Fourier Transform: 77[3(1/) — ¢ 7(v=5)?

@ Gaussian derivatives
o Mother wavelet: 1,(x) = dd;"e—ﬂx27 n>1
(for n =2, 1, is called the "Mexican Hat")

o lts Fourier Transform: ,(r) = (2i7w)"e*7”’2
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Wavelet analysis

A picture is worth a thousand words

o AN — —~NA]

0 0.2 04 0.6 08 1

0 0.2 04 0.6 Y o8 1

Figure: Correlations with Morlet wavelets translated and dilated
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Fourier Transform of wavelets

1

Vanl) = (%57

) — Pap(v) = Vah(av)e 2

Transformee de Fourier des ondelettes echelle 2, 1, 1/2
T T T T T T T

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Figure: Fourier Transform (modulus) of Morlet wavelets of scales
a=1/2, 1, 2. Wavelets behaves as band-pass filters around frequency v =

a
where 1y is the peak wavenumber (max of ¢). For the Morlet wavelet, 1y = 5.
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Equivalent definition
Let f € L2(R). Forall >0, b€R,

Wf(a,b) = ;E/J;Ooof(xW(X_b)dx

a

WF(a,b) = /a /m%(y)&(ay)e?fwbdy

— 00

Proof: From the Parseval formula
Wf(av b) = <f7 wa,b> = <%712}a,b>

@ In the time domain (x), Wf(a, b) provides information on the signal
f around point b in a vicinity of size ~ a.

@ In the frequency domain (v), Wf(a, b) provides information on the
signal f around frequency ~ %

= Wavelet analysis is a time-scale analysis

Kévin Polisano Wavelets and Applications



Time-frequency resolution of wavelets

wa7b(X) — \}EQZJ(X ; b) s 12371)(]/) _ \/512(81/)8_2’.7”31/

We suppose that 1 is analytic, 1)(0) = 0 and 5 = 5= fooow@(w)Fdw
> 2 2 R [P 5, 2 2 2
| (= bPlsPae = [ et = 2%

1 [ 2 L e A p
2y (o= 0) WesPa = 50 [" (@ —nPiiPas =%

The energy spread of a wavelet time-frequency atom 1, ;, corresponds to
a Heisenberg box centered at (b,& = 1)/a), of size ao; along time and
0.,/ a along frequency. The area of the rectangle remains equal to o0y,
at all scales but the resolution in time and frequency depends on a. An
analytic wavelet transform defines a local time-frequency energy density

2

Pwf(b,&) = |WFf(a,b)| ‘Wf( b) (scalogram)
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Heisenberg boxes of two wavelets v, p,

| (e Rls(oPar

-,
21 Jo

ny
a
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Inversion of the Continuous Wavelet Transform

Synthesis formula and energy conservation

Theorem (Calderén, Grossmann and Morlet)

Let 1 € L2(R) be a real function such that

2
Cy = /.Jroow(y)‘du < 0

J—o0 v

Any f € L2(R) satisfies

dadb
2

Fx) = clw / - zo WF (2, b n(x) 2e (%)

and

+o0
/ 17 |dx—C/ / W (a 2dadb(**

Kévin Polisano Wavelets and Applications
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Proof (Synthesis formula): For a fixed a, the CWT can be written:

Wi (a, b) = }/:’O (%) ¢(Xab)dx—(f*¢a)(b)

where we have noted:

N (N A R

The right integral b(x) of (%) can now be rewritten as a sum of convolutions:

b= [ W) s G = [ F oS

b= & [ e valen s = ) [ w|«2(aw)|2§

f(w) +oo WJ df ( )

By the change of variable £ = aw we get b(w) < Jo

The equality of their Fourier transform leads to b = f. QED
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Inversion with a different synthesis wavelet

o Decomposition with an analysing wavelet g: a > 0, b € R,

W, f(a, b) = /:O f(x)\}gg (X - b) dx

e Synthesis with a reconstruction wavelet h:

f = — W,f(a, b —db
(= ] weflan) 2 >

o Cross-admissibility condition on wavelets g et h (g, h € L?(R)):

2 [t [Hoo 1h<x—b> da
a

o [ B0

————=dk < 00
—co |k

Remark: In this case, only h or g has to be a zero mean function.
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Coding — In practice

For a fixed a, the CWT is a convolution product:

sl reu(*7) ax
= (fx.)(b)

Wi (a, b)

where we have noted:
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Coding — In practice
fxah,: b WF(a,b)

Signal (S) Scaled Wavelet (SW) Convolution(S, SW)

-

3D plot of Wavelet Transform

2D plot of Wavelet Transform

source: ataspinar.com
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Examples and Interpretation

Example 1: pure cosine

If f is a pure cosine f(x) = cos(2mkx), then

+o00 2imkx —2imkx
Wf(a,b) = / (e +2€ >¢a’b(x) dx

—00

- %Ma,b(k)J”/A’avb(_k)J

o If the wavelet v is analytic complex:

WF(a, b) = \f P (ak)e2mkb

o If the wavelet 1 is real Wf(a, b) = /a Re (J,(ak)eﬂiwkb)
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Example 1: pure cosine
Pure cosine f(x) = cos(207x) (k = 10)

fonction a analyser

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients d ondelettes

100 200 300 400 500 600 700 800 900 1000

Figure: CWT (modulus), using the Morlet wavelet (analytic complex)
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Example 1: pure cosine
Pure cosine f(x) = cos(207x) (k = 10)

fonction a analyser

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients d ondelettes

100 200 300 400 500 600 700 800 900 1000

Figure: CWT (modulus), using the Gaussian derivatives (real)
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Examples and Interpretation

Example 2: a Dirac

If f is a Dirac f(x) = d(x — xp) (pointwise measure supported by xp),

then:

Wi (a, b)

+o00
= /_Oo d(x — x0) Yap(x)dx

= tab(x0)
- ()

Remark: At each scale a, b — Wf(a, b) is the wavelet of scale a
centered on xg (up to a symmetry).
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Example 2: a Dirac

Dirac dy,
fonction a analyser
1 T T
0.8 T
06- 4
041 1
0.2r- 4
0 I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients d ondelettes

100 200 300 400 500 600 700 800 900 1000

Figure: Signal "Dirac" and its CWT (modulus, Morlet wavelet, divided by 1/a)
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Example 3: the periodic square wave
Periodic square wave

fonction a analyser

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients d ondelettes

100 200 300 400 500 600 700 800 900 1000

Figure: Square wave and its CWT (modulus, Morlet wavelet, divided by /a)
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Example 4: a modulated wave

Modulated wave

fonction a analyser
T T T

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients d ondelettes

100 200 300 400 500 600 700 800 900 1000

Figure: Modulated wave and its CWT (modulus, Morlet wavelet, divided by 1/a)
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Example 5: 2 sinusoids with noise

2 sinusoids with noise

fonction a analyser
4 T T T

100 200 300 400 500 600 700 800 900 1000

Figure: Signal and its CWT (modulus, Morlet wavelet, divided by /a)
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Example 6: Holder function of exponant %

Holder function of exponant %

fonction a analyser

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients d ondelettes

1 1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

Figure: f(x) = y/|cos(27x)| and its CWT (modulus, Morlet wavelet, divided by /a)
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The Dyadic Wavelet Transform
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The Dyadic Wavelet Transform

For a fixed a, the CWT is a convolution product:

Wr(a, b) = \}gf;oof(x)z/;(x_b)dx

a
= (f*1.)(b)
where we have noted:
J— 1 X 7 —
0 = Z=0(%). G0 = val=)
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The Dyadic Wavelet Transform

For a fixed a = 2/, the Dyadic Wavelet Transform is a convolution
product:

WF(2,b) = \%/_J:Of(x)w(xz_jb>dx
di(b) = (f=4y)(b)

where we have noted:

w9 = =05 ). B = (=)

w
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The Dyadic Wavelet Transform

For a fixed a = 2/, the Dyadic Wavelet Transform is a convolution
product:

WF(2,b) = \}E/_;oof(x)v,b()(z_jb)dx
di(b) = (f=1;)(b)

whose Fourier transform is
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The Dyadic Wavelet Transform

Theorem (Littlewood-Paley, 1930)
If 3 |4(2w)|?=1 then

fx) =327 / W (2, )y p(x) db

Proof: Remark that
/ WE(2 )y (x) db = d; * 1;(x)
then take the Fourier transform

> 27du)he) = 32T RVIS RV ()

J
= F@) YIRw)P = F(w)

=1
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Take home message

Time-frequency vs time-scale

w

w
|
st >1
(a) Diracs (b) Fourier
w w
4 A
>t > 1
(c) STFT (d) Wavelets dyadics

Kévin Polisano
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Take home message

Heisenberg for wavelets

=~ S
T f3
M S
Y
— < 4
S
Vo ()
(real part)
[Vap @1

Credits: Paul S Addison’s figure modified

Kévin Polisano

Heisenberg box in
the time—frequency
plane
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Take home message

Scalogram construction

N~
Yab )

local matching of
wavelet and signal
leads to a large
transform value

Scale

Current

Wavelet
transform

Credits: Paul S Addison’s figure adapted

wavelet
scale

Kévin Polisano

plot

Current Location
wavelet

location
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Wavelet zoom
a local characterization of functions
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Local characterization of regularity via the derivatives

"Smoothness" depends on the differentiability class to which a function
belongs to. Among these 4 continuous (C°) functions:

° is the only one and C*®
@ x — |x| is not differentiable at x = 0 (corner)

® x — +/|x| (cusp) and ( ) have kind of "infinite gradient"
at the singularity point x =0

N
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Prerequisite: Global regularity through Fourier coefficients

Lemma (Riemann-Lebesgue)

If fis L' then the Fourier transform of f satisfies

= / f(x)e ¥ ——0
|w|—00

How fast the Fourier coefficients decrease?
For f p tlmes continuously differentiable with bounded derlvatlves since
flw) = f( ) then by iterating we get f(w) = 1 @ f(w)

iw dx (iw)P dxP

K
lwlP

HAIS

with K = sup f—;,f
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Prerequisite: Global regularity through Fourier coefficients

Conversely Fourier decay governs smoothness?
If  is L1 then f € L and f is continuous.

Proof:
Fl< 177 /| iwx?(w)\d S 177 /ﬁ(w)’dw < 400
x)|< 5 e w < > +

which proves boundedness. As for continuity, consider a sequence

Yn — 0 and
1 . N
f(x—yn) = 5 /e’“’(x_y")f(w) dw
The integrand converges pointwise to ei"“’x?(w) and is uniformly bounded
in modulus by the integrable function f. Hence Lebesgue's dominated
convergence theorem applies and yields f(x — y,) — f(x) that is

continuity in x. O
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Prerequisite: Global regularity through Fourier coefficients

Theorem (Sufficiant condition for differentiability of f at order p)

A function f is bounded and p times continuously differentiable with
bounded derivatives if

/ | \?(w)](l + |w|P)dw < 400

J =00

—

Proof: Knowing that f(K) : w i (iw)*f(w), by the inversion formula
1700 (1) = ’/ @(w)efwtdw‘ < [T F@)Heldo < +oo
for any k < p, so (k) is continuous and bounded. O

Corrolary. If it exists a constant K and € > 0 such that

‘f((JJ)|< W’ then f e(CP

Credits: S. Mallat (Wavelet tour)
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Prerequisite: Global regularity through Fourier coefficients

The decay of \/f\(w)| depends on the worst singular behavior of f

—1if —7<x<0 _+oo 4 )
f(X)_{+1if0<X<7T —;msm(Qn—l)x)

where f is periodized. For f = 1j_1 7] = [ (w)|= o(|lw|™1)

Credits: Wikipedia (https://en.wikipedia.org/wiki/Fourier_series)
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Wavelet zoom: Lipschitz regularity

Definition (Lipschitz regularity of order «v of a function f)

Let @ > 0 be the regularity parameter and xg € R.
f is pointwise Lipschitz—a at xg, if there exist C > 0 and a polynomial
P, of degree n = ||, such that

VheR, [f(xo+h) = Pa(h)[< Clh[* (1)
P, is the Taylor expansion of f at xp. (If 0 < a < 1, Py(h) = f(xp))

e f is uniformly Lipschitz—a over [a, b] if f satisfies (1) for all
xo € [a, b], with a constant C independent of xp.

@ Extension to negative « (distributions): f uniformly Lipschitz—«
over |a, b[ if its primitive is Lipschitz—(a + 1) over ]a, b|.

@ The Lipschitz regularity of f is the supremum of the « such that f
is Lipschitz—a.
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Lipschitz—« functions

VheR, |f(x+ h)— f(x0)|< C|h|®

T
Figure: The schematic diagram of Lipschitz—a functions

Credits: Li-Wei Liu & Hong-Ki Hong
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Some examples

@ A Lipschitz—a function at xp, with 0 < a < 1, is continuous, but a
priori non differentiable.

A C? function in a neighborhood of xg is Lipschitz—-1 at xg.

The Lipschitz regularity a with n < o < n+ 1 allows to classify
regularities between C" and C"™1.

@ A bounded function is Lipschitz—0. For example the Heavyside
function H(x) =1if x >0 and 0 if x < 0.

The distribution ¢ is Lipschitz—(—1) (as the derivative of H).

@ The function x — |x — xp|* (0 < aw < 1) is Lipschitz—«
e The function y/[cos(27x)| is Lipschitz—1.
f(@)
2
1
0

0 0.2 0.4 0.6 0.8 1
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Some examples

A Holder function of exponant %

fonction a analyser
1 T T T

0.6

02r-

0 I I I I I I I I I
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients d ondelettes

1 I I I I I I I 1 1
100 200 300 400 500 600 700 800 900 1000

Figure: f(x) = y/|cos(27x)| and its CWT (modulus, Morlet wavelet, divided by /a)
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Some examples
f(x)

0 0.2 0.4 0.6 0.8 1 b

Figure: Wavelet transform Wf(a, b) calculated with ) = —6’ where 0 is a Gaussian
Singularities create large amplitude coefficients in their cone influence.

Credits: S. Mallat (Wavelet tour)
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Regularity measurements with wavelets

Let @ > 0 be fixed, ¢ a wavelet with compact support C [—L, L], and
N > « vanishing moments:

/x”z/)(x) dx =0, for0<n<N
Remark: a wavelet with N vanishing moments is orthogonal to
polynomials of degree N — 1.
Polynomial Suppression. Let f Lipschitz-a at xg, that is
f(x) = Pa(x —x0) +e(x —x0) with |e(x — x0)|< |x — xo|@

Since @ < N, the polynomial Py has degree at most N — 1.
With the change of variable y = (x — b)/a, we verify that

WP,(a, b) = /;OO P,,(x)\}gﬂ) <X - b) dx =0

Then,
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Pointwise Lipschitz regularity and wavelet coefficients

Let o > 0. One consider a wavelet 9 of regularity CV, with compact
support supp ¥ C [—L, L], and N > « vanishing moments.

Theorem (Jaffard, Estimation of the local regularity of f at point
X())
If f € L?(R) is Lipschitz—a < N at xp, then 3A > 0 such that

b*XO

)

Conversely, if a < N is not an integer and there exist A > 0 and o/ < «
such that
o/)

V(a,b) e R x RT, |Wf(a,b)|< A 2™tz (1 + '

a

b —
V(a,b) € R x RY, |Wf(a,b)|< A a2 <1 - ‘ 0

then f is Lipschitz-a at xp.
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Proof of
Since f is Lipschitz—« at xg, there exists a polynomial Py of degree
o] < N and C > 0 such that

[f(x) — Pn(x — x0)|< Clx — xo[”

Since ¢ has N vanishing moments, we saw that WP,(a, b) = 0, and thus

|WF(a, b)] ‘/ — Pn(x — x0)] tha,p(x) dx

/ C‘X*XO'“% o (57)]

The change of variable y = *=2 gives

X

[WE(a, b)|< V3 / Clay + b= xo|w(y)ldy
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Proof of

W(a,B)I< Va [ Clay +b—x " [w(y)ldy
—00 =~ =

t s
Lemma: |t + s|*< 2%(|t|*+]s|¥)
Proof: Let m = max(|t|,|s|) so that |t + s|< [t|+|s|< 2m. Then,
£ 57K (2m)® = 20m® < 2°(|t[*+]s])

By the lemma,

Wra.b) < €2V (s [ Ileldy +1b -l [

— o

b*XO ()/)

with M = max (/% ly[*[0 ()], [ l(y)ldy). O

w0y

< KM so+2 (1 + ‘

a
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Cone of Influence

If supp ¢ = [—L, L], the cone of influence of xp in the time-scale space
is the set of points such that xp € supp ¥, = [b — La, b+ La], that is

M(x0) ={(b,a) e Rx R} : |b—xo|< La}
If £ is Lipschitz-a at xg, then 3A > 0, such that for all (b, a) € I'(xp):
|WF(a, b)|< A a2
and conversely for a non integer.
« is computed by the slope of the curve log a — log|Wf(a, b)|

™
A

asAfeue p uonsod
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Wavelet Transform Modulus Maxima

References
e S. Mallat, W.L. Hwang Singularity detection and processing with
wavelet, IEEE Trans. Info. Theory, 38(2):617-643, Mars 1992

@ S. Mallat, S.Zhong Characterization of Signals from Multiscale
Edges, IEEE Trans. Patt. Anal. and Mach. Intell., 14(7):710-732,
Juillet 1992
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Wavelet construction from the derivatives of a Gaussian

Let 6(x) = exp(—x?/0?) the Gaussian Kernel and let considered

PN (x) = 00" (x) = ((fx)lve 2

The wavelet )V has N vanishing moments.

A
N

0.4 ~

Figure: The Gaussian 6 (n = 0) for o = 1 and its two first derivatives:
n=1is represented in (— - —) and n =2 (the Mexican hat) in (- - -)
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Multiscale differential operator

A wavelet 1) has fast decay if

Cm
VmeN, 3C, suchthat [¢(x)|< , VteR
1+ tm
Theorem (Multiscale differential operator)

A wavelet 1 with fast decay has N vanishing moments if and only if
there exists 6 with a fast decay such that

, o NdNe
v = ()" o
AS a Consequence
Waf(ab) = M0 i)
NIRE D)= 9 N

Moreover, 1) has no more vanishing moments iff [ # 0.
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Multiscale differential operator

Example

@ The convolution f x 6,
averages f over a domain
proportional to a f(t)

o If the wavelet has only one
vanishing moment: ) = —0
then Wi(a, b) = ah(f * 0,)(b)
has modulus maxima at sharp
variation points of f % g,

s o %
o If the wavelet has two vanishing /N/\
moment: ) = —6” then W, f(u,s) ‘ L u

/

Wa(a, b) = a5 (f % 0,)(b) |
corresponds to locally 1

maximum curvatures
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Wavelet Maxima Lines

e Point of Modulus Maximum are any point (bg, ap) in the time-scale
plan such that the curve b — |Wf(b, ap)| is locally maximum at
b = by. This implies that

OWf(ao, bo) —0

ob a

e Maxima lines is any connected curve a(b) in the scale-space plane
(b, a) along which all points are modulus maxima.

Theorem (Hwang, Mallat)

Suppose that v is CN with a compact support and ¢ = (—1)N9(N) with
[0 #0. Let f € LY[bg, b1]. If there exists ag > 0 such that |Wf(a, b)|
has no local maximum for b € [bg, b1] and a < ag, then f is uniformly
Lipschitz—N on [bg + €, b1 — €], for any € > 0.

Kévin Polisano Wavelets and Applications 119/291



Wavelet Maxima Lines

Remarks

@ This theorem implies that f can be singular (not Lipschitz-1) at a
point xg only if there is a sequence of wavelet maxima points
(bk, ak)ken that converges toward xp at fine scales:

lim by =xg and lim a,=0
k——+o0 k——+o00
@ These modulus maxima points may or may not be along the same
maxima line. This result guarantees that all singularities are

detected by following the wavelet transform modulus maxima at
fine scales

Theorem (Hummel, Poggio, Yuille)

Let ¢p = (—1)VO(N) where 6 is Gaussian. For any f € L2, the modulus
maxima of Wf(a, b) belongs to connected curves that are never
interrupted when the scale decreases

Kévin Polisano Wavelets and Applications



Wavelet Maxima Lines

Example

log2(scale)
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Example: a simple Dirac o

0.8

0.6

0.4

0.2

5
0

representation temporelle

0.2

0.4 0.6 0.8 1
(a) Le Dirac

Chainage des maxima

0.2

0.4 0.6 0.8 1

(c) chainage

Kévin Polisano

250

200

150

100

50

(d

[
\\ 6 /
200 400 600 800 1000
(b) les coefficients d’ondelettes
chaine 1:
3.5 4 4.5 5

évaluation de la singularité en 0.5
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Example: 2 cusps f(x) = |x — 0.25|3+|x — 0.7|3

representation temporelle

15
1
0.5
0 0.2 0.4 0.6 0.8 1
(a) La fonction
Chainage des maxima
opt 2
~
1
s |
[
82
S
j=2
23
|
4
5

0 0.2 0.4 0.6 0.8 1
(c) chainage

Kévin Polisano

250

ol
VR,

150

100

50

200 400 600 800 1000
(b) les coefficients d’ondelettes

chaine 2 et 3:

-10
0 1
(d) évaluation de la singularité en 0.7 (trait continu)
et 0.25 (trait pointillé)
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Example: f(x) = |x — 0.25|:4|x — 0.7|34noise (SNR=0.01)

representation temporelle

2 250 \S
1.5 200
150
1
100
0.5
50
0
0 0.2 0.4 0.6 0.8 1 200 400 600 800 1000
(a) La fonction (b) les coefficients d’ondelettes
Chainage des maxima chaine 2 et 3:

—log2(scale)

5 o2 i L 4
0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5
(c) chainage (d) évaluation de la singularité en 0.7 (trait continu)
et 0.25 (trait pointillé)
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Practical estimation of «

f is uniformly Lipschitz—a in the neighborhood of xg iff there exists
A > 0 such that each modulus maximum (b, a) in the cone satisfies

|WF(a, b)|< Aa™tz
which is equivalent to

1
log,| Wi (a, b)|< logy A + (a + 2) log,a

= The Lipschitz regularity at xp is the maximum slope of log,|Wf(a, b)|
as a function of log,a along the maxima lines converging to xg
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Practical estimation of «

Example

log2lWi(u,s)!
-3

-4

log2(scale)

-7 loga(s)

Figure: The full line gives the decay along the maxima line that converges to
the first jump, and the dashed line to the first cusp.
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Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

Properties

@ Independants
displacements

@ Gaussian distribution

@ lrregular trajectories
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Brownian motion

Brown Einstein Wiener Kolmogorov Mandelhrol Kamont Bonami Eslrade
1828 1905 1923 1940 1995

Independants displacements

Irregular trajectories . o
Gaussian distribution
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Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonami-Estrade
1828 1905 1923 1940 1968 1995 2003
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Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

Brownian motion

@ (Bt): has independants ) ‘V\\/ <=
increments, By = 0 a.s. e o
) X (@)

® By — By ~N(0,t; — t;)
@ (B:)+ has continuous sample | /
paths a.s. - { )

(Ax)? x t
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Brownian motion

Brown Einstein Wiener Kolmogorov  Mandelbrot Kamont Bonaml Esl ade
1828 1905 1923 1940 1968 1995

Isometry W : (L2, (f, g),2) — (G,E[XY])
o E[W(F)W(g)] = (f, &), W(f)~N(0,]f]7)
o Vte [Oa ]-]a B: d:ef (]l[O,t])
2
E[(B: — Bs)?] = Hll[o,t] T, = /]l[s,t] =t—s

E [(Bt,- - Bt,-fl)(Bt,- - Bt,-fl)} = <11[t,-_1,t,-], ]l[tj_l,tj]>L2 =0

Wiener stochastic integral = /f(x)W(dx)
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Self-similarity

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

Self-similarity
{X(t)}teT self-similar of order H if

VA ER, (XM} oer A X (8)} e r
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Self-similarity

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonami-Estrade
1828 1905 1923 1940 1968 1995 2003

Self-similarity
{X(t)}teT self-similar of order H if

VAER, (X(O\0her = M {X(D}er
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Self-similarity

Brown Einstein Wiener Kolmogorov
1828 1905 1923 1940

Self-similarity
{X(t)}teT self-similar of order H if

VAER, {X(\D)} oy (2 \H X (t Ve

Kévin Polisano

Mandelbrot Kamont Bonaml Eslrade
1968 1995

Wavelets and Applications
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Fractional Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

E [(B(t) - B(5))?| = |t — s]"" = independantincrements

H=02 H=05 H=038

Figure: Fractional Brownian motion B"

Kévin Polisano Wavelets and Applications 133/291



Fractional Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

E [(B(t) - BM(s))?| = |t — s =
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Fractional Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

o E[(BH(t) - BH(s)?] =t — s =

o R(t,s) = Cov(B"(t), BM(s)) = 3(t2" + s*H — |t — s]*")

95 04 05 05 o7 08 09 B o oz 03 04 05 05 o7 08 09 O 0z 03 04 05 05 07
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Fractional Brownian motion

Brown Einstein Wiener Kolmogorov  Mandelbrot Kamont Bonaml Esl ade
1828 1905 1923 1940 1968 1995

o E[(BH(t) - BH(s)?] =t — s =
o R(t, s) = COV(BH( t), BM(s)) = 3(t2" + 2 — |t — s]*")
o BY(t) = & fo ik W(E) =

W 05 05 o7 o8 09 B o oz 03 04 05 05 o7 08 09 O 0z 03 04 05 05 07 08 o8
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Fractional Brownian field

Brown Einstein Wiener Kolmogorov  Mandelbrot Kamont  Bonami-Estrade
1828 1905 1923 1940 1968 1995 2003

o E[(B"(x) - B(y)?] =[x — y|*", x,ye R?
o R(x,y) =} (Ix [2+]ly [2H~||x — y [[27)

o BH(x) = CAH Jr2 %W(dﬁ)

o
Kévin Polisano Wavelets and Applications
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Wavelet-based estimation of the Hurst exponent

@ Let us consider a discrete wavelet transform at scales a = 277/ and
positions b = k

i k(x) = 2792927 x — k)
which encodes series information in details
djk = (B, ¥j k)
o Compute wavelet variance

1
Var(dj.) = ~ Z |dj,k|2

@ Plot the log, of variances versus scale j

log,(Var(d;e)) = (2H + 1) + cste
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Wavelet Maxima Lines for Brownian motion

(@) D(a)

4

3 1

2 09

1 0.8

0
- 0.7

b q o

£ 2 4 0.65 0.7 075 (d)

Credits: S. Mallat (Wavelet tour)
137/291
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Take home message

@ Vanishing moments up to order N make the wavelet ¢ blind to
polynomial of degree < N (smooth part of the signal), leading to
better detections of singularities

o If the function is Lipschitz—a, then the amplitude of the wavelet
coefficients are going to decay very fast to zero when the scale goes
to zero (all the more that « is high)

@ A remarkable aspect is the reverse: if we know this property, then
we can characterize the pointwise regularity of the function at any
point

@ All singularities are detected by following the wavelet transform
modulus maxima at fine scale

@ The Lipschitz regularity at every point can be retrieved by
measuring the maximum slop of the decay of log,|Wf(a, b)|

@ The wavelet-based estimation of the Lipschitz regularity enables to
recover the self-similarity exponent of fractals
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The 2D Continuous Wavelet Transform

Kévin Polisano Wavelets and Applications 139/291



Bidimensional Continuous Wavelet Transform

@ 2D Wavelets
@ Directional Continuous Wavelet Transform, inversion formula
© Isotropic Wavelet Transform

@ A wavelet for image analysis: the "Canny" wavelets
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2D Fourier Transform

The bidimensional Fourier transform of a function f integrable on R? is
defined by:

f(k) = || f(x)e 2™ *dx, Vk e R?
i
If f € L?(R?), the inversion formula is given by:

F(x) = || F(k)e?m*dk
R2

and the energy conservation writes:

[[1Fe0Pax = [{1F (k) 2dk
R2

R2
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2D Fourier Transform
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Definition of 2D wavelets

Y € LY(R?)N L?(R?) is a wavelet if it satisfies the admissibility condition:

ﬂ [ ”k||2 ik < +00

which implies (and is equivalent provided ¢ has sufficient decay at
infinity):

[ w(xyax =

R2

In practice, one usually needs that ) has p vanishing moments:

fjxl x32)(x1, x2)dxpdxo =0, Voag,ap € Nst.oag+ap <p-—1

Remark: this means that the Fourier transform of the wavelet should
behave as ||k||P when k — 0 in Fourier domain.

Kévin Polisano Wavelets and Applications 143/291



2D Wavelet family

Let ¢/(x) be an admissible wavelet. The wavelet family is defined by
dilation, rotation, and translation from 1:

benae)= 30 (R0 (57))

with b € R? the translation parameter, a the positive scale and R~ the
rotation of angle @ in R?, corresponding to matrix

R . — cosf sind
0=\ —sinf cosh

Example (Anisotropic Morlet Wavelet)

Let u = (cos v, sin «) the unitary vector of direction «.
The (complex) Morlet wavelet is:

w(x) — efﬂ||x||2610i71'x~u

Kévin Polisano Wavelets and Applications 144/291



Isotropic wavelets

Example (lterated Laplacian of Gaussian)

For n > 1, the wavelet hy, is defined by:

n 82 82 ! —T|[X
hon(x) = (—1) <W+8y2> eIl

Its Fourier transform is given by:
han(k) = 477" || K[>

For n =2, hy is the Laplacian of Gaussian, popular in computer vision,
also called the Mexican hat.

Remark: the wavelet hy, has exactly 2n vanishing moments. The
maximum of its Fourier transform hy, is achieved for kg = v/2n.
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Isotropic wavelets

Example (lterated Laplacian of Gaussian)
o Wavelet hy(x,y) (Mexican hat) and 1D section:

@ 1D section in physical and Fourier space of the wavelet hg
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2D directional continuous wavelet transform

Let ¢ be a 2D wavelet.

The directional wavelet transform of a given function f € L?(R?) is
defined by:

Wf(a, b,0) = JJ V(a,p,0)(x) dx

= e (R (57))

Applying Parseval formula, it writes:

f(a,b,0) —aff P(aR_ k) 2imkb 1k
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Inversion formula

The function f can be reconstructed by:
1 [too p2m e da
= — ,b,0) — dfdb
cy /O /0 ii! Wf(a b, )w(a,bﬂ)(x) 23

with

=I5 !
Ik H2
The energy conservation writes:

+oo p2m
[[1FGPax = 1/ [ [fiweca b0y 492 49db
cy Jo 0 a3
R2 R2
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Inversion formula with a different wavelet
Let f(x) € L?(R?).

Wavelet decomposition of f(x) with an analysing wavelet g:

f(a, b,0) H ( (Xab>>dx

Synthesis with a reconstruction wavelet h:

+oo 2w
F(x) = / fvvfabe < < b>>dad9db
Cgh a

Cross admissibility condition on functions g, h € L2(R?):

g(k)h(k)
gh — ‘i‘! W dk < 400
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Classical examples

Wavelet constructed from the Gaussian G(x) = e "I/’

@ Wavelet transform with an isotropic wavelet
o g(x) = h(x) = AG(x) (Mexican hat)
o g(x) = G(x) (g is not a wavelet) and h(x) = AG(x)

o Wavelet transform with a vector wavelet g(x) = VG(x)
(Canny multi-scale detector)
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Isotropic Wavelet Transform

When the wavelet is real, isotropic (i.e rotation invariant
¥(x) = h(]|x||)), the wavelet transform of f comes down:

” )Y < b) dx

= the integral on 6 disappears

From Parseval equality, it writes:

f(a, b) _aﬂ k)e2™kb qk

= the wavelet transform acts as a filter on the Fourier transform of f
around the frequency %
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Isotropic Wavelet Transform

If ¢/ is admissible, one has the energy conservation:

1 [t da
gf(x)ﬁdx: Cw/o izﬂvw(a, b)P<5 db

and the synthesis formula:

f(x) = ; /O " g WF(a, b)ibs p(x) % db
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The Canny multiscale detector for image processing

Let © be a smoothing kernel such that:

°HR2@:1
e©>0

e O isotropic or O(x,y) = ©1(x)O2(y)
Example (Gaussian)
O(x) = G(x) = e IxI* 3 smoothing kernel isotropic and tensorial
Directional Wavelets

W(x) = VO(x) = (¥',¢?)

00 00
1_ _YY 2 _ _ ¥
7!} N 8X1 and @Z} aXQ

Wavelets in the direction ¢ = 9% = cos np%i + sin 90%2 =¢-VG
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The Canny multiscale detector for image processing

Decomposition: computation of the vector wavelet transform

W (a, b) = (Wlf(a, b), W?f(a, b))

° W1 fj ( b> dx — vertical singularities

x—b
W2f =||f 2( )d horizontal singulariti
° (a, b) l! (x)aw 3 x — horizontal singularities

Interpretation:

Wf(a,b) = aV (f* 1y (x)> (b)

a

W represents the gradient of the image, smoothed by © at scale a
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Proof: Let define L(x) = —%, 8, = L0 o L, ¥¥(x) = Lyk (-%).

W (a,b) = [[ f(x)%d}k (x — b) dx = (f = 45)(b)

;
By the chain rule &(@RZ L)(x) = §2(L(x)) &= (x) hence
it =5 (3) =2 (3001) 00 =25
(Fi)B) = aff f(x)aa(f:(b_x)dx
= aabk {[ F()8a(b — x)dx
— S (r+8,))
(o) <o (200N -0
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Multiscale detector and directional wavelet transform

If © is isotropic, one has g—g(R_ex) = cosf g—g(x) +sinf g—g(x)
Then,

Wyf(a, b, ) = G- Wf(a, b) — singularities in the direction oa

where W1 f is the directional wavelet transform of f with Yt as
analyzing wavelet.

One can write:
Wyif(a,b,p) \ _ [ cosp sing W1f(a, b)
Wy2f(a, b, ¢) —singp cos W?2f(a, b)

In vector formulation:
Wye =R_, W

~ will provide a reconstruction formula for the multiscale detector!
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Inversion of the multiscale detector (Le Cadet, PhD 2004)

F(x) = Czl />0 a3f WF(b,a) - W, (x)db

with Cd,l =72 for ® = G.

Proof: The reconstruction formula of the directional wavelet transform

with wavelet ! gives:
)) dﬁg db

F(x) = Cwl/%/mﬂwwlfabe w( _9(

Replacing Wy1f(a, b, 0) by its definition:

= C:;l /027r /O+oo jj {cos& Wf(a, b)
R2

+sin W2f(a, b)} 199 (R—9 (x — b)> dedg” db
a
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If © is isotropic, one has:

00 00 00
6x1(R %) = cos@a—Xl( )+S|n98—2()
then
F)C = [o0%2 [fradb [77 A0 cos> 0 Wf(a, b) 1 2O (X -b)

G‘

+ fin0 % [fro db [§7 dOsin? 0 W2f(a, b) 152 (X52)

U‘

+ f1o0% [fzodb JT dO cosOsin 6 Wf(a, b) 122 (X5

L)

G‘

+ fio0% [frodb [§7 dO cosOsin 0 W2f(a, b) 152 (X52)

Since [2™ cos?#df = [Z™sin®0df = 7 and [7" cosfsinfdf = O then

™

f(x)= q

[ 5 I a0 [wtomiate)  wtta o] 0
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Energy conservation formula

The vector Wf(a, b) should be represented in modulus-orientation:
Mf(a,b) =  ||WTf(a,b)| Modulus
Af(a,b) = Arg(Wf(a,b)) Orientation

The energy conservation (with an isotropic kernel ©) writes:

[[1Fe0Pax = gw/w i;’ [[ (Mt (a. b)Y ab
R2 R2

Example (Application: edge detection in 2D images)
@ Edge points at scale a are points where b — Mf(a, b) is locally
maximum in the direction Af(a, b).

@ Estimation of the maxima lines linking edge points through scales a.
The tops of these maxima lines (a — 0) finally constitute the edge
points of the image.

© Computation of the Lipschitz regularity at any edge point.
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Application: edge detection in 2D images

Detection and classification of edges of a regular image, regular outside
regular singularity lines.

The edge is characterized by

a singularity in the intensity,

in the direction of the gradient \2
Along the edge, i.e. in the
orthogonal direction of the gradient,
the regularity is maximal

Remark: In pratice one will consider V(/ ﬁG(g)) which correspond
to wavelet coefficients of / with a wavelet Gaussian gradient.
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Application: edge detection in 2D images

Edge Model (Canny 86)

A point (xo, yo) of an image is an edge point if at this point the gradient
modulus of the intensity, smoothed by a kernel 8,, |V (/% 6,)|, is locally
maximum in the direction of the gradient V(/ x 6,).

Variation of the intensity of a Gaussian distribution; where are the edges?
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Application: edge detection in 2D images

New Edge Model (Mallat-Zhong, Mallat-Hwang 92, Le Cadet 2004)

f image smoothed by a kernel 0, of scale a with 0 < a < amax:

g, = f % 0,. If there exists a connected curve through scales, along
which all points are local maxima in the gradient direction Vg,, the
limit (xo, yo) of this curve at small scales is an edge point.

a=1
—
Point de / A ; Point de
contour non ; \»cn{q{our‘ R
significatif ; significatif
LT

a=N

(échelle la
plus grossiére)

Figure: 2D maxima lines
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Application: modulus of the wavelet transform local max.

Fine scale

163/291
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Application: modulus of the wavelet transform local max.

Intermediate scale
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Application: modulus of the wavelet transform local max.

Large scale

)
o
B
©
e
a
Q
<
o
=
®©
0
8
R
]
>
2




Application: modulus of the wavelet transform local max.

Figure: Edge points (top), wavelet coefficients maps at fixed scale (bottom) of
a X-Ray image
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Practice of the maxima line construction in 2D

@ Map of modulus maxima (in the gradient direction) at each scale.

@ Two modulus maxima between two successive scales are linked if
they are neighbors in the gradient direction.

s=1
AT =
A ;
: (Xa.Ya, at1) // a+1
LT Ve
e :
length :
required T Max a a
® chainer
s=N

(coarsest
scale)
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Practice of the maxima line construction in 2D

@ Let Mf(xo, Y0, adep) be a modulus maximum at scale agep.

@ One consider, the 9 modulus Mf(xo(£1), yo(£1), adep+1)-

© One links with the maximum modulus that has the angle
Af(x1, y1, adep+1) closest to Af(xo, Y0, adep)-

(Xa,Ya, a+1) ///,/ ” a+1
N —
Max a a
. (Xa,Ya.a)
chainer
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The dyadic wavelet transform

The scale varies along the dyadic sequence {2/};cz. Let 1 < k <2

00 1 v
V) =g w0 = 50* (%) 0 =vh(x)

oxi’
The dyadic wavelet transform at b = (b, bp) is:
WK, b) = (f, 0% (- — b)) = f x (b)

Let 0y (x) = 2776(277x) and f,(x) = 0 (—x). The wavelet transform
components are proportional to the gradient of f smoothed by 6,;:

WiF(2, b)) . (2 (Fbx)(b)\ 5
(sz(z,-,b» e (zg; " é;)(b)> = 2V(F i) ()
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The dyadic wavelet transform

@ The modulus of this gradient vector is proportional to the wavelet
transform modulus:

MF (2, b) = \/IWLF (2, b)[2-+| W2F (2], b) 2

e The angle Af(2/, b) of the wavelet transform vector:

i) a(b) if WH(2/,b) >0
Af(z’b){ T+ a(b) if W2F(2 b)>0

W2f(2/, b)

b) =tan ! | "~

a(b) = tan [Wlf(21, b)

@ An edge point by at the scale 2/: Mf(2/, b) is locally maximum at
b = by when b = by + Anj(bg) and |A| small enough.

@ The level sets of g(x) are the curves x(s) where g(x(s)) is
constant. If 7 L x(s) then

0x(s)
Os

,n;(b) = (cos Af(2, b), sin Af(2/, b))
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The dyadic wavelet transform

@ The Ievelv set property applied to Horizontal Vertical =~ Wavelet Wavelet  Wavelet
g = f x 021‘ proves that a wavelet wavelet transform  transform  transform
. ) transform  transform  modulus  angle for a modulus
maximum point by the vector W (u,27) W2f(u,2/) non zero  maxima
n;(bo) of angle Af(2/, bg) is n Hodulus

perpendicular to the level set of
f x 0, going through by.

-
7lj(ll \
\ L |

@ If the intensity profile remains
constant along an edge, then the
inflection points (maxima points)
are along a level set. The intensity
profile of an edge may not be
constant but its variations are
often negligible over a
neighborhood of size 2/ for a small
scale 2/. The tangent of the
maxima curve is then nearly
perpendicular to n;(bg)

-voooo
i ]l]l]ﬂll

IOj
o &
Ol=
0=
-

-
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Reconstruction of edge curves

(@) (@

FIGURE 6.11

Multispale edg_es of the Lena image sho_wn in Figure 6.12. (a) (W_/lf(u, 2/)} 7<j3.
(b) (W2 (11, 27)} —7j<—3. (€) {MF (10, 27)} —7<j=—3. (d) {Af (11, 2)} —7<j<—3. (€) Modulus
Credits: Mallat maxima support. (f) Support of maxima with modulus values above a threshold.
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Application: characterization of the singularities

Regularity of edge curves
Let 0 < a < 1. f(x,y) Lipschitz-av at (xp, yo) if A s.t Yh = (hy, h2),

|f(Xo + h1, 0+ hz) - f(XOaYO)|§ AHhHa

xe¥)

grad £ (x,.y,

7 el
Contour Contour

On a curve of discontinuity, the estimation of the regularity reduces to
the one dimensional case. f is uniformly Lipschitz-« inside € iff

V(x,y) € Q Vj, [MFf(x,y,2)| < A2ltD
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Computation of the Lipschitz regularity

The Lipschitz regularity is evaluated at each edge point, by computing

the slope of log Mf(xc, yc, a) = g(log a)

TR £
N

LB LV

Figure: Three noisy domain: maps of modulus, Lipschitz regularity, denoising
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Examples

Figure: Mandrill original image (top left), large scale edge points (bottom left)
and fine scale edge points (top right) and local regularities computed on
maxima lines (bottom right)
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Examples

8=

Figure: Top: original images; Bottom: edge points (the colors represent the
regularity parameter)
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Examples
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Reconstruction from edges

Image approximations can be computed by projecting the image on the
space generated by wavelets on the modulus maxima support. Let A be
the set of all modulus maxima points (2/, b), n is the unit vector in the
direction Af(2/, b) and

820,(x — b)
on?

Since the wavelet modulus Mf(2/, b) has a local maximum at b in the
direction of n then (f, 3, ) = 0.

wgf,b(x) =2%

A modulus maxima approximation fp can be computed as an
orthonormal projection of f on the space generated by the family of

: P :
maxima wavelets {1/12]7b}(2j,b)€,\,1§k§3.

2
—_q1-1 _ k k
fA=L""(Lf), Ly= Z Z<y7 ng,bng,b
(2,b)eN k=1
Credits: Mallat (see chapter 5 on frames and especially section 5.1.3 on dual synthesis)
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Reconstruction from edges

FIGURE 6.12

(a) Original Lena image. (b) Image reconstructed from the wavelet maxima displayed in
Figure 6.11(e) and larger-scale maxima. (c) Image reconstructed from the thresholded wavele
maxima displayed in Figure 6.11(f) and larger-scale maxima.

Credits: Mallat

Kévin Polisano Wavelets and Applications 179/291



Denoising by multiscale edge thresholding

FIGURE 6.13
(a) Noisy peppers image. (b) Peppers image restored from the thresholding maxima chains
shown in (). The images in row (¢) show the wavelet maxima support of the noisy image—the
scale increases from left to right, from 27 to 23 The images in row (d) give the maxima
H . support computed with a thresholding selection of the maxima chains.
Credits: Mallat prort comp £
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The 1D Discrete Wavelet Transform
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From the CWT to the DWT

local matching of
wavelet and signal
leads to a large

transform value

Wavelet
transform
plot

/\ Current | W

wavelet

/\ scale ()

Current Location
wavelet
location
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Scaling function

When Wf(a, b) is known only for a < ag, to recover f we need a
complement of information that corresponds to Wf(a, b) for a > ap.
This is obtained by introducing a scaling function ¢ that is an
aggregation of wavelets at scales larger than 1:

- +oo __ d +00 |4 2
= [P = [T g

and the complex phase of gg(w) can be arbitrarily chosen. One can verify
that ||¢||= 1, and from admissibility condition that lim,,_.q|d(w)[2= Cy.
The scaling function therefore can be interpreted as the impulse
response of a low-pass filter. Let us denote ¢,(x) = a—1/2¢(x/a) and
gzvﬁa(x) = ¢3(—x). The low-frequency approximation of f at scale a is
Lf(a,b) = f % ¢,(b) and it can be shown that:

da

32

1 1 ao ‘
f(x) = ﬁLf(ao, ) % Pag(x) + C—/O WF(a,) % ba(x)-
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From the CWT to the DWT

@ We need to discretize the CWT for numerical applications

@ It requires to choose a sampling grid, that is a discrete lattice
M= {aj, bj,k,j, k € Z}

e Noting v x = ¥4 p,, and @Zj,k explicitely derived from 1); , we want:

f=> (f )0k

J,keZ
@ The dyadic grid corresponds to the choice a; = 27/ and bjx = k2=J

Pik(x) =22(2x — k), jkeZ

=- mostly leads to frames not bases.
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From the CWT to the DWT

2.

t 1}
f(t) i

| A e |
0.4 0.6 0.8 1

0.2

Credits: S. Mallat
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From the CWT to the DWT

Definition (Frame)

{¥;j} is is a frame in the Hilbert space H if there exists B> A >0
such that

AIFIP< D [F o0 P< BIIF|1?
J,keZ
@ A, B are the frame bounds
o A= B # 1lis a tight frame
@ A= B =1 and ||¢j «]|=1 is an orthonormal basis

= Given a wavelet 1,!) we need to find lattice I' such that {1);«} is a
"good frame" that is 5 =~ 1.

(Example)

Mexican hat and Morlet wavelets give good nontight frames for a dyadic
lattice, adapted to geometry.
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From frames to bases

Questions

@ Can we reconstruct any function of Hilbert space from the discrete
subset of wavelet coefficients?

o Is there a basis of orthogonal wavelets on L2(R)?

@ How can we construct such wavelets? With specific properties:
regular, with compact support, ...

@ Is there a fast algorithm to compute them?
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The effervescence

@ Meyer made the link with the Calderon’s identity

F(x) = / / W (a, b)wab(x)db—

e Meyer, Grossmann, Daubechies (1985): construction of L?(R)
bases: . '
F(x) = ax2/2y(2x — k)
Jik
e Meyer, Malat (1986): Fast Wavelet Transform (FWT)

Yves Meyer Ingrid Daubechies Stéphane Mallat
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From Fourier series to Wavelet series

J 2-1
F(x) =Y cup(Zx — k)
i=0 k=0

L L L L L L L
-8 -6 -4 -2 0 2 4 6 8

Figure: For J = 0 the approximation contains N =1 terms
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From Fourier series to Wavelet series

J 21
Fx) =Y > Grb(2x — k)
i=0 k=0
os
0t
o
B B S S —

Figure: For J = 0 the approximation contains N =1+ 2 terms
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From Fourier series to Wavelet series

J 2/-1
Fx) =Y Gub(@x—k)

i=0 k=0

15

ik

o5t

ol

05}

AL

g 5 ) 2 o 2 3 s 8

Figure: For J = 0 the approximation contains N =1+ 2 4 4 terms
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From Fourier series to Wavelet series

J 2-1
F(x)=> > Gu(Zx —k)
=0 k=0
1 ~/ v

o
T

N
(
=

Figure: For J = 0 the approximation contains N =1+ 2 + 4 + 8 terms
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From Fourier series to Wavelet series

J 2/-1
Fx) =Y Gi(Px—k)
i=0 k=0
15
1 ~— —
051
ol
051
Ak — |
g 5 ) 2 o 2 3 s 8

Figure: For J = 0 the approximation contains N =1+ 2+ 4 + 8 4 16 terms
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From Fourier series to Wavelet series

J 2-1
Fx) =Y Gub(@x—k)
i=0 k=0
b —
1 r\/\m«— U\/vv rrrrrrrrr —l

Figure: For J = 0 the approximation contains N =1+2+4+48+ 16+ 32 terms
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From Fourier series to Wavelet series

J 2/-1
Fx) =Y Gub(@x—k)
i=0 k=0
15
ik
o5t
ol
05}
AL
g 5 ) 2 o 2 3 s 8

Figure: For J = 0 the approximation contains N =1+ ... 4 512 = 1023 terms
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From Fourier series to Wavelet series

f(x) ~ Z Cj7k’¢}(2jX — k)

‘C/‘k‘>1072

Q5

Figure: The approximation contains V = 207 terms
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The four musketeers of wavelets

Figure: Stéphane Mallat, Yves Meyer, Ingrid Daubechies & Emmanuel Candeés
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1. The Haar Basis
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Decomposition algorithm

2 4 8 12 14 0 2 1]

J (means) J (details)
[3 10 7 1.5] [[1 -2 7 0.5]
J (means) 4 (details)
[6.5 4.25] [-3.5 2.75]

J (means) | (details)
[5.375] [1.125]
—

[5.375 1.126 35 275 -1 -2 7 0.5]
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Decomposition algorithm

[248 121402 1]

15
10
5
0
-05 013105 15 1 15 [-1 -2 7 05]
10 10
7
5 o1 | ur_i
0 -10
-0.5 0 [5‘50.5.25] 1 1.5 -0.5 0 [,3@.52751 1 15
10 5

[

5 *\_\ oﬁd N
0 i

-05 0 [PF5 ! 15 05 0[PPy 15
6
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The Haar basis of L2(0,1)

i 1
Let ¢ =1 on [0,1] and ¥(x) = { 171 ::); E {221{
—
_—

Forj>0and 0 <k <2 —1, one set: 1 x(x) = 234)(2x — k) then

(x) = 2% _ if x € [k277, (k+ 3)27]
wj,k( ) { 7(2%) if x € [(k+%)2—i,(k+1)2—j[

The family {¢, ) «} is an orthonormal basis of L?(0,1), called Haar
basis.

Kévin Polisano Wavelets and Applications 194 /291



The Haar basis of L2(0,1)

if x € [0,
if x € [%

= N
—

Let o = 1 on [0,1] and 4(x) = { o

e

]
_—

For j>0and 0 < k <2 —1, one set: ¢ x(x) = 23 (2x — k) then

NI~

)2z ifx e ke (k4 )27
Pi(x) = { 0 otherwise

: +1,2k + Pj+1.2k+1 Pi+12k — Pj+12k+1
Compression: ) ; = Pit Sy = T j+1,2k+

V2 V2
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The Haar basis of L2(0,1)

e Projection on approx. space: Py,f =3, (f, 0 k)¢jk = >k G kjk
o Projection on details space: Py f = 37, (f, 1 1)1 x = >k dj ki)
@ Projection on orthogonal spaces: Py, ,f = Py f + Py, f

08
06|
04]
02

08
06|
0.4]
02

‘ PVJf
‘ PVJ-lf ‘ ‘ , PWJ—lf
PVJ—Qf 7 PWJ72f

08
06|
04]

02

Credits: G. Peyré
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The Haar basis of L2(0,1)

@ Vj: vector space of constant functions on {[2’3, ";ﬂ} A
k=0,..2i—1

o The family ¢; x(t) defines a o.n.b of W; (dim 2/ — 1) such that
Visr=Vio W,
2+l_1
o I (x) =Py f(x)= > Griapjria(x)
k=0
_ 21 21
° f”l(x):P\/jf( )+PWf ch kpjk(x) + Z i ki (x
{{f, ‘P:k}k
Py. f/ijf\JrP ¥ {if:e51l} < >+{f‘/’1+lk e
I+t Vit
\‘PW]f/ {(f din) e
_ CGj+1,2k t+ Gi412k+1 d . = Cji+1,2k — Cj41,2k+1
° C:/7k - \/§ ! ./k - \/§
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The Haar basis of L2(0,1)

o Decompression:

S /e O o ¥ ok 1
j+1, \/§ ) J+1,2k+ \/§
2+1_1
o tl(x) = Pv..f(x Z Cit1,kPj+1,k(X)
k=0
' 2_1 21
o Ft1(x) = Py f(x) + Py, f(x Z Gpj(X) + Z s (X
{w]k}k
b f/PV]f {(f7w+uc>}k<‘ >_|_(f%+” "
Vit + Py, f
™~ Py, f— IERTT)
® Git12k = W\ﬁdjk Cj+1.2k+1 = Cjkxkdjk
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Haar Basis Functions

o

il

UL

Two equivalent bases of the piecewise constant function space on [0,1],
associated to the subdivision k/8,k =0,...,7

Credits: V. Perrier
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Advantage of the decomposition
The Haar decomposition of a function f € L2 (0, 1) finally writes:
+oo2i—1
f=co+ > Y diktjk

j=0 k=0

with
1 1
co = (f, ) :/o f(x)dx, dik= (1K) Z/O f(x) 1y k(x)dx

Local smoothness characterization
(i) if f € CY(ljx) then |d; ,|< C27%/2
(ii) if f € C*(xp) i.e. |[f(x) — f(x0)|< k|x — x0|* (0 < @ < 1) then

|dj,k|§ C 2—4(a+1/2)

= Useful property for compression!
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Proof of (i)
For fixed j > 0 and k € {0,...2 — 1}, let [; x :=]k27, (k + 1)27].
Supp{¥j ik} = [k277, (k + 1)277] =1, 4

The Haar coefficient on 1); x of a function f is given by:

dj k =/ fjk
S

If £ € CL(1;x) then for all x € I; 4:

f(x)=f (x - <k - ;) 2—1) + (x - (k + ;) 2‘1) Fi(0x),  Ox € ik

Then,
dix = //»,k (x _ (k + ;) 2—1) F(0, ). (x) dx

J
since [ x =0, hence

i i 1 .
|dj k| < 5UP|f/|/ 12777120/2 dx < = sup|f!| 27372
ljk ’j,k 2 /j,k
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Example: f(x) = y/|cos 2mx|

" o1 o0z 03 o0& 05 08 07 08 09 1 0 01 02 03 04 05 06 07 05 0§ 1 ‘o o1 o0z o3 0¢ 05 05 07 08 05 1

Left figure: function f sampled on 1024 = 2'° valyes.

Middle figure: Haar coefficient map
(abscissa : k27 € [0,1], ordinates: —j, j=1,...9).

Right figure: Reconstructed function from the 80 largest coefficients (> 0.06)
(compression = 92.2 %, L2-relative error = 6.1073).

Credits: V. Perrier
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2. Regular wavelet bases
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Multiresolution Analysis (MRA)

A multiresolution analysis of L?(IR) is a sequence of closed subspaces
(\/j)jEZ s.t.:

QVjeZ V,CVi1C = L%(R),

2] ﬂ,ez = {0} and U_/GZ Vj = L*(R),

Q f(x) eV, < f(2x) € Vj;1,

Q f(x)e Vo< VneZ, f(x—n)e W,

Q@ Jp € Vo s.t {¢(x —n):neZ}is an orthonormal basis of V.

@ is called the scaling function of the multiresolution analysis.
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Multiresolution Analyses — Examples

The spaces V; are dilation invariant, then:

Vj = Vec{yj « = 22p(2x — k) ; k € Z}
Haar:
Vo = {Piecewiese constant functions on [k, k + 1[, Vk € Z}
Splines of degree 1:
Vo = {Continuous functions on R, affines on [k, k + 1[, Vk € Z}
Splines of degree n:
Vo = {C"! functions on R, piecewise polynomial of deg n on [k, k+1[}

Shannon: ~
Vo = {f € [2(R) ; supp f C [1,2]}
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MRA — Two-scale equation for the scaling function

Vo C Vi = span{p1 x := V2p(2x — n) ; n € Z}, then p € Vp writes:

QZh,,thX—n) with h,,—\[/ ©(2x — n)dx

nez

Applying the Fourier Transform:

P(&) = mo (g) o (g) with  mg(¢ Z b e=2imnE

nGZ

Assume that ¢ € LY(R) and [ ¢ = 1, then:

I (3)

(hn) is a low pass filter and myg is its transfer function.
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MRA — Construction of the wavelets

Vj C Vji1, let W; be the orthogonal complement space of V; in Vji1:
Vit =V & W

One searches for a function ¢ s.t. {¢)(x — n) : n € Z} is an orthonormal
basis of Wy. Since ¢ € Wy C V4, one searches for g, such that

\/Zg,, (2x — n)

nez
This is equivalent in Fourier domain to:
N _ § Fo § h —2imn€
W& =m(3)2(5) with m(&)= Zgn
nEZ

= What are the assumptions on filters (h,) and (g,) in order to
construct a scaling function ¢ and a wavelet ¢ generating a MRA?
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Detail filter (necessary) constraints for h
If {¢jn} is an orthonormal basis of V; then:
© From the two-scale equation it comes
h0)=v2 (G)
@ {¢(- — n)}, orthogonal is equivalent to:
¥n €N, @x@(n) = d[n] = 3 |P(¢ + 2km)[*= 1
k

since sampling a functign periodizes its Fourier transform.
Inserting ¢(§) = 2_1/3h(§/2)¢(£/2) and separating even and odd
integers terms (with h is 27-periodic) yields:

(€ (€ 2 (¢
h<§> <p<§+2p7r) +‘h(§+7r)
Putting ' = &/2 and ¢ = £/2 + 7 in the two sums yields:
[h(E)P+Ih(E +m)P=2 (C)

2 +o0

>

p=—00

2 +oo0

>

p=—0c0

2

¢ —2

<ﬁ<§+7r+2p7r>
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Detail filter (sufficient) constraints for h

Conversely, the following theorem gives sufficient conditions on h to
guarantee that this infinite product is the Fourier transform of a scaling
function:

Theorem (Mallat, Meyer)

Ff E(f) is 2m-periodic and continuously differentiable in a neighborhood
of £ =0, if it satisfies (1), () and

inf || >0 (G3)

ge[-m/2,m/2]
then
3(6) ﬁOE(z—Pg)
Sp =
p=1 V2
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Detail filter (necessary) constraints for g
If {1)jn} is an orthonormal basis of W, then:

Q@ {Y(- — n)}, orthogonal is equivalent to:
VneN, ¢xi(n)=d[n] <= D |(¢ + 2km)P=1
K

Inserting (€) = 271/2g(£/2)3(£/2) and separating even and odd
integers terms (with g 2m-periodic) also yields:

BE)P+HEE+m)P=2 (G)

@ {Y(- — n)}, orthogonal to {p(- — n)}, is equivalent to:
VneN, ¢x@(n)=0<= > §(€+2km)p* (€ + 2km) =0
K

which leads to:

E(E)h(E) +8(E+m)h(E+7) =0 (GCs)
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Detail filter (sufficient) constraints for g

Conversely, the following theorem gives sufficient conditions on h

and g to guarantee that the constructed wavelets {¢(- — n)}, give an
orthonormal basis of W;:

Theorem (Mallat, Meyer)
Under conditions (C1) — (&) — (G3)

{1(- = n)}n orthonormal basis of W; <= ((G4) + (GCs)

2 ()P 9(w)[?

- - - T
Quadrature mirror filters:

g(&) = e ™h(¢ + m) <= gln] = (~1)'"h[L — 1]
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MRA — Wavelet decomposition

vo@vvf @ W;

j=—00
W; = Vec {1 (x) = 259(2ix — k) ; k € Z}
Let f € L?(R). Its wavelet decomposition writes:
+o0
ZZCMP(X—/()‘FZZ i kj k(X Z Z
keZ Jj=0 keZ j=—00 keZ

with ¢, = <f, g@(- — k)> and dj,k = <f, wj,k>-
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Property of wavelet bases

@ Vanishing Moments. A wavelet v satisfies:

=

One usually impose N Vanishing Moments:

/X”@sz, VYn=0,...N—1
R

@ Characterization of the local smoothness of . For n < N, o« < N,
(i) if f € C"(Vy,) then |d; «|< C 274(+1/2) (for k27 "neighbor" of xp)

(ii) if f € C(xp) ie. |Fled(x) — Flol(xo)|< k|x — x0]*~[*] then

|d; k| < € 279(aF1/2) (for k277 "neighbor" of xo)

= Important property in view of compression
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Examples of wavelets constructed from filters

Debauchies family

Q h(0) =2
@ [h(§)I*+|h(¢ + m)P=2 K
© p vanishing moments < Vk < p, d—gk(w) =0

= orthogonal wavelets with minimal support 2p — 1

o p =1 (Haar): h=[0.7071,0.7071]
e p=2: h=1[0.4830,0.8365,0.2241, —0.1294]
e p=3: h=[0,0.3327,0.8069, 0.4599, —0.1350, —0.0854, 0.0352]

I

Credits: G. Peyré
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Examples of scaling functions and wavelets

Scaling function (left) and wavelet (right):

Ist line: Meyer functions (C* and infinite number of vanishing
moments).

2d line: Splines of degree 1 (2 vanishing moments).
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Examples of scaling functions and wavelets

T T
‘
‘
-
2 o4 1
i : I\
:

02 + + ft
0
05 -
02 ! ! -

04 1
353 25 2 151 050 05 1 15 2 25 3 45 4 35 3 25 2 15 1 05 0 05 1 15 2 25 3 35 4
M Fonction dEchelle, C12 R Ondeletie, 12
Fhi() — Psil) —
12
15
1
1
08
Z o0s = o5
3 &
0.4 fbod
o
05
0 \/ V
02 Bl
454353252151050051152253354 455556657 555454-353252151-050051152253354455556

Scaling function (left) and wavelet (right) compactly supported:
Ist line: D8 (4 vanishing moments).
2d line: Coifman C12 (4 vanishing moments).
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Fast Wavelet transform (FWT)
Let f be a discrete 1D signal discret 1D of length N = 27.
Step 0 of the algorithm: computing the coefficients c; = (¢, «)
k2 2f(k277), ke,

(using [ ¢ = 1). One consider the function f; of V.

1= cupui
ke,

Decomposition: V; = VoW --- W;_4
For j=J,...,1oneuses V; =V, 1 ® W,_1, and then Vk ¢ Z:

Ci—1,k = Z Cj.nhn—2k
neZ

di—1k = Z Cj,n8n—2k
neZ
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Fast Wavelet transform (FWT)

Proof: From the two-scale equation

:\@Zhngo(Zx—n)

neZ

by replacing x <— 2x — k and multiplying by 2/2 we get:

2Rp2x —k) = 2V23 hap(2tix — (n+ 2k))
nez
—2k

pjk(x) "L > hn—okpjsin

neZ

..

Cj.k iy Z hn—2kCj+1,n

ne7,

Example (Haar wavelets)
o Low-pass filter: h=1---,0, %, L0,--]
e High-pass filter: g =[--,0, %
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Fast Wavelet transform (FWT)

Noting ¢ = (Cj,k)keZ:

convolution - decimation:

¢i1[k] = (¢;x h)[2k], VkeZ
di—1lk] = (¢ * &)[2k], VkeZ

with h[n] = h[—n] and &[n] = g[—n].

Résolution ]  Résolution J-1 I%fésglfltiOHO
N
Yl |
G C \
Ul
d |
AN
Credits: V. Perrier — - - 3 /
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Fast Wavelet transform (FWT)

Noting ¢ = (Cj,k)keZ:

convolution - decimation:

¢i-1[k] = (¢;x h)[2k], VkeZ
di—1lk] = (¢j * §)[2k], VkeZ

with A[n] = h[—n] and g[n] = g[—n].

Cj+1 »h 12— " h 2 G
> g — 12 —>d; > g l2—>dj1

Credits: V. Perrier
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Fast Wavelet transform (FWT)

Recomposition: From the wavelet coefficients and the scaling
coefficients at scale 0: [cok, {djk } j=0..-s—1,kez], One wants to retrieve the
scaling coefficients at finest scale J: ¢; = [(ck)kez]-

I.XI I.XI

Oneuses V,_ 1 @& Wj_1 =V}, forj=0,...,J -1

Cjk = Z Cj—1,nhk—2n + Z di—1,n8k—2n, Yk EZ
neZ nez
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Fast Wavelet transform (FWT)

Recomposition: From the wavelet coefficients and the scaling
coefficients at scale 0: [cok, {djk } j=0..-s—1,kez], One wants to retrieve the
scaling coefficients at finest scale J: ¢; = [(ck)kez)-

It writes, in vector form, noting:

— x, ifn=2p
X":(X”)[”]:{ 0 ifn=2p+1

¢j[k] = (-1 » h)[K] + (dj—1 * g)[K]

Cjp1—> -
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Fast Wavelet Transform algorithm

1 T T T T T T T
0.8 i
0.6 i
04F .
0.2 .
0 1 L 1 1 L L
Algorithm (FWT) fo
Initialization: ¢; = f, N =2/ 0000000000000000
Forj=J,...,0 e .
Y =cj 0—0—0—0—0—000 .
G-17 (CJ xh)y2 ! cy Jli o @ @ ® ;.--""d‘]il
v —L .
dj*1 = (Cj*g) i’ 2 E E;’,d(/d
cj-2 @ ® 4
! E'_}vd,/f:a
Ci-3i @ o
Credits: G. Peyré I Eils.":r.e.t e
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Fast Wavelet Transform algorithm

dg
K (X] 2 PR |
L J L A - ‘ ‘
Algorithm (FWT) fo
Initialization: ¢; = f, N =2/ 0000000000000000
Forj=J,...,0 e .
_ M f=c 00000000 |.;
G-1=(¢xh) |2 o LA
v J-1i @ @ @ @ i
di-1=(¢*&) |2 : Pd)
cr-2i @ 4
| } vdi—3
-3\ @ i
Credits: G. Peyré I .d}S.C.r_e.t e
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Fast Wavelet Transform algorithm

"~

C3

<
-
L
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Fast Wavelet Transform algorithm

.
1 \

<

X
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Fast Wavelet Transform algorithm

g 2
=i S
h Hl2

<

X
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Fast Wavelet Transform algorithm

((IQ

C3 ‘

Co

"~

da o

da

5 U"_)_",

N
/
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X

Wavelets and Applications




Fast Wavelet Transform algorithm

/S

C3 ‘

g Hi2 &
>
h H 2 §

CQ
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Fast Wavelet Transform algorithm

/S

((IQ

g Hl 2 da o|dz,1|d2,2|d2 3
C3 - -
|: 7 —
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Fast Wavelet Transform algorithm

/S

f[’_’.tl ”’2 \{'f’_).Z ”’2.?%

dy o f{J.l

g
{ I
h
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Fast Wavelet Transform algorithm

d3 do.o|da,|d2 2| do 5

dig ”il.l

942
{ 7
h -
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Fast Wavelet Transform algorithm

Hl 2

C3 ‘

("’_‘.U ’]2.1 y

dip
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Fast Wavelet Transform algorithm

e
{v
h_
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Example from Mallat

Credits: G. Peyré
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Example: f(x) = y/|cos 2mx|

" o1 o0z 03 o0& 05 08 07 08 09 1 0 01 02 03 04 05 06 07 05 0§ 1 ‘o o1 o0z o3 0¢ 05 05 07 08 05 1

Left figure : function f discretized on 1024 = 2'° values.

Middle figure: wavelet coefficient map D8
(abscissa: k2= € [0,1], ordinate: —j, j=1,...9).

Right figure: reconstructed function with the 80 highest coefficients (> 10~3)
(compression = 92.2 %, relative error [? = 3.1077).

Credits: V. Perrier
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The 2D Discrete Wavelet Transform
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The 2D Haar Basis

From ¢(x) and 7(x) one can define the bidimensional functions:

O(x,y) = p(x)e(y), Vi(x,y) =v(x)e(y)
VA(x,y) = p()ely), V3(x,y) = b(x)u(y)

The values of W1, W2 and W3 on [0,1] x [0, 1] are:

Fori=1,2,3,j >0 et k= (ke ky), 0 < ke, ky <22 —1:
\Uj’iﬂk(x7y) = 2J§Wi(2jx — ki, 2jy — ky)

The family { ®, Wi, w2 W3 4 is an orthonormal basis of L2 ([0, 1]?).
gk Tk Tk
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2D Haar expansion

+oo 2-1

f—Co-i-Z Z ( k+Dk\Uk+Dkw3,k)
j= ka,ky 0

with Gy = ff[o 12 fand D k - ”[0 1]2 f \U

G Dj_,

1
DJ71

2 3
Dj_, Dj_,

2 3
Dy, Dy,

Kévin Polisano Wavelets and Applications



Example: square

50 0]

) m) J—

25) =)

Left figure: Original image.
Middle figure: entire Haar coefficient map.
Right Figure: coefficients of the two finest scales.
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Image decomposition on the Haar basis

i

3 = E) 0 50 )

Left figure: Original image (2562 pixels) and its Haar coefficients:
Middle figure: entire Haar coefficient map.
Right Figure: coefficients of the two finest scales.
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Image compression with the Haar basis

Original image and compressed images:
Middle figure: keeping the 1024 largest coefficients (compression 98,4%).
Right Figure: keeping the 3467 largest coefficients (compression 94,7%).
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Image decomposition

The wavelet bases 2D are constructed by tensor product of 1D bases.
Let ¢ and v be the scaling function and wavelet of a MRA. Two
constructions are available:

(1) Pure tensor product wavelet bases (anisotropic) :

wjl;’{k/(x)y) = wj,k(X)@bj’,k’(Y), jv.j, € Z) k7 k/ €z

The associated 2D wavelet transform uses 1D FWT on lines followed by
1D FWT on columns of the image.

(2) Wavelets arising from tensor product 2D MRA of L2(R?):
e Approximation space (scaling functions) V; = V; ® V;
o Detail spaces (wavelets) V; defined by Vi1 =V, W,

Vitr = Vi1 @ Vi
(Vie W) e (Vo W)
= (e V)e W e V) e (Vo W) e (W e W)
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Separable scaling function and wavelets

20 o,y

-
ﬂ\\\\w\\\ .

Il
W‘ |

o

0
10

Figure: Fourier transforms of a separable scaling function and of three separable
wavelets calculated from a one-dimensional Daubechies 4 wavelet

Credits: S. Mallat
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2D multi-resolutions

O(x,y) = p(x)e(y), VH(x,y) = (x)e(y)
V2(x,y) = p(x)i(y), W3(x,y) =¥ (x)y(y)

1_ 1 2_ 2 3_ 3
Vf:Span{cbj,k}k Wj —Span{\lfj’k}k V\/J —Span{\Uj‘k}k Wj —Span{\llj)k}k

—_—— —_———

Vin= (VieV) & (WeV) o (V;oW) & (WeW)
————— ————— ———— ——————

coarse approx horiz. details vert. details diag. details

Image C,[k] = (f, ®, ), wavelet coefficients: D’[k] =(f \UJ’ K

SUSLa

Figure: (Haar approximation) Py, f = > (f, ®; ()@« = >, G« Pjik
Credits: G. Peyré
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Image decomposition

W, = Vec{v k()i (v) i @ik (v); V()0 w(v) | (k, K') € Z%}

W§73 2
W
J-2
W5 Vs W2
J-1
1 3
WJ—2 WJ—Z
1 3
WJfl WJfl
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Fast 2D Wavelet Transform

.........................................................................

2
H| 2 D3

1
_¢2_.Dj

3
-l 2t D3

on each row
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Fast 2D Wavelet Transform

Cy f(wz, wy)
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Fast 2D Wavelet Transform

=1
111’]71

p

TJ

D!
J—1

=1
vy
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Fast 2D Wavelet Transform

Tl
II’J—I
T2 ;2
‘I’J—l ‘I’J—1
1
Oy
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Fast 2D Wavelet Transform
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Fast 2D Wavelet Transform
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Fast 2D Wavelet Transform
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Fast 2D Wavelet Transform
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Lena multi-resolution

Figure: (Left) original Lena Co. (Right) coarse approximation Cs (small Lena
on the top left corner in red) and the discrete wavelets coefficients Dj for
i€{1,2,3} and at scales j =8,/ =7and j =6

Credits: G. Peyré
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Other examples

Credits: G. Peyré

Kévin Polisano Wavelets and Applications



Example: Lena compression

0

Left figure: Image 256 x 256 = 65536 pixels, 256 grey levels.
Middle figure: wavelet coefficients of the 2 finest scales

Right figure: Reconstructed image from its 4000 largest wavelet
coefficients (4 vanishing moments).

Compression factor = (65536 -4000)*100,/65536 = 93,9 %
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Comparison Haar basis vs. regular wavelets

Left figure: Image 256 x 256 = 65536 valeurs, 256 niveaux de gris.
Middle figure: reconstructed image from its 1024 largest wavelet
coefficients in the Haar basis.

Right figure: reconstructed image from its 1024 largest wavelet
coefficients in a wavelet bases with 4 vanishing moments.
Compression factor = (65536 -1024)*100/65536 = 98,44 %
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Fast 2D Inverse Wavelet Transform

: | '
on each row ' | on each column |
L) ]
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JPEG-2K Compression
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JPEG-2K Compression
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JPEG-2K Compression
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JPEG-2K Compression
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JPEG-2K Compression
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JPEG-2K Compression
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JPEG-2K Compression
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JPEG-2K Compression
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JPEG-2K Compression
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CWT-2D sampled vs. FWT-2D

Discrétisation de la Discrétisation de la avec décimation :
transformée en ondelettes "Fast Wavelet Transform'
continue

transformée dyadique

échelle a

Credits: Le Cadet
Wavelets and Applicatio
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Take home message
Question: CWT (discretized) or DWT?

Answer: depends on the application

o CWT for feature detection (no a priori choice for a, b): more
flexible, more robust to noise, but only frames in general.

o DWT for large amount of data, data compression: bases, faster,
but more rigid (need generalization)

Generalizations

@ Biorthogonal wavelets

@ Wavelet packets

e Continuous wavelet packets (integrated wavelets)
Redundant WT (on a rectangular lattice)

Second generation wavelets (lifting scheme)
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Linear and nonlinear approximations
in wavelet bases
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Linear approximation

@ Orthogonal projection over the space V/

P, : L2(R) — V

o= D feuein= Y > {F U0«

keZ j<J—1kezZ

e Strang-Fix condition of order N (x" € Vp):

Vn=0,...,N—-1, X—Zakapx—
keZ

i.e ¥ has N vanishing moments.

o Projection error:

If — Pyf|2= Z > HF k)

j=J keZ

Kévin Polisano Wavelets and Applications



Linear approximation

Theorem
If f € H5(R) with s < N, with

If = Pufll< €275 |[f]|

(cf. finite elements with h = 277) then the following Sobolev-norm
equivalence holds:

IF1[s ~ Z > 22U ) P

j=—00 keZ

~ [[Pofll2+ Z > 22U k)

j=0 keZ
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Nonlinear approximation

Let N € N. Let v € L?(R), and its wavelet decomposition:

+oo +oo

u=up+ Z Z d; ki

j=0 k=—o0
One sorts the wavelet coefficients dj x in decreasing order:
|dJ'1,k1‘> |dJ'2,k2|> > ’djN—17kN_1|> s
and one introduces the best N-terms non-linear approximation
N
Yn(u) = uo+ Z dis 1 Vji ki
i=1

If u€ Bg? with % =1 + 5, which is equivalent to:

ulToam D" |diul? < 400
q

JEZ kEZ
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Nonlinear approximation

The non-linear approximation error is defined as:

lu=En(W)lif= D Idiwl
Theorem

1 S
o= En(@)lli= € () lullsg
(in dimension d, s should be replaced by ).
Proof:

n|dj, k| < Zld,, 19< Zld,, 17=2 > ldiul < Cllullgea

JEZ keZ
Then
|y | < C™ Y ] e

_2 1 1 _
lu=En(u)l|2< Cllullgza( >- 0~ @)Y2 < CNZ7 ||uf| gza= CN~°[|u| gz
n>N+1
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Nonlinear approximation

Remarks

@ For N = 27 one obtains the same convergence rate for the linear
and nonlinear approximation. But By“ is a space which contains
more functions than the space H®, for instance discontinuous
functions for arbitrary large values of s, whenever functions of H®
are necessarily continuous if s > d/2 (d space dimension).

@ One has also the characterization: if u € Bg?

Card{\: |d\|> e} < Ce™1
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Compression factor of a turbulent 2D vorticity field

o ) P ————
= T — 10
| ®
5 %
100} b) 00f
| @ 0
( 10}
= \ N
n ) \ o
~
= 2
o V% ~ a0l
,
50 \ 350| o
¢
™ \ { w
wh) P AN he . @
NN AN
50 a \ oo o
50 100 150 200 250 300 350 0 450 500 50 100 150 200 250 300 350 400 &0 500 10" 10 10 10" 10° 10° 10"

Figure: Analysis of a 2D turbulent field: vorticity field, its wavelet coefficients,
and nonlinear approximation error, in terms of the number of retained
coefficients
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Denoising in orthonornal wavelet bases

References: articles of Donoho and Johnstone

Noised data:
X[n] = f[n] + W[n], n=0,...,N—1

@ X: measured data
e f: (unknown) signal of size N, corrupted by noise
e W: Gaussian white noise, with zero mean and variance o2

The aim is to provide an estimator F = D(X) of f minimizing the risk
(mean square error):

N-1

r(D, ) =E{|If = F|2} = > E{|fln] - Fln]]?}

n=0
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Nonlinear estimators in bases

Let B={gx € RN, k=0,...,N — 1} be an orthonormal basis of RV.
One decomposes the noisy signal in B:

N-1

X[nl = > (X, gx)exln]

k=0

and the inner products satisfy:

(X, gk) = (f,gk) + (W, gk)

Remarks

o ((W,gk))«k are independent Gaussian variables of variance o2 (since
B is orthonormal).

o E{(X,gx)} = [(f, gk)*+0?
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Diagonal operators

A diagonal operator D in the basis B leads to an estimator of the form:

N-1

F—=DX = Z di ({X, gk)) 8k
k=0

where the dj are attenuation functions of the noisy coefficients.
Ideal estimator (i.e. which minimizes the risk r(D, f))

N-1

F=DX=>3 (X g 0(k) g
k=0

with
NER R
9(“‘{ 0 if |(F.gn)l< o

In this case, the operator D is nonlinear.
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Thresholding estimators

A thresholding estimator in the basis B corresponds to a diagonal

operator D:
N—1

F=DX=> d((X,8)) &
k=0

where the dj are thresholding functions (let T be a threshold):

x if |x|> T ("hard" thresholdin
dk<x)—pr(x)—{ oot 2

or x—T if x>T ("soft" thresholding)
G() = pr() =4 x+T if x<-T
0 if |x|<T

@ Question: choice of T to approach the risk of the ideal estimator?

@ Answer: the choice T = o,/2log, N leads to a risk slightly larger
(Theorem of Donoho-Jonstone).
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Wavelet thresholding

Consider a (periodic) wavelet basis:
B={pjx; 0<j<J—1 k=0:2-1} (N =2’ = size of the data)
The thresholding estimator writes:

J—12-1

F=pr((X,0) o+ >3 o1 ((X,154)) ¥

Jj=0 k=0

Estimation of the noise variance o2
If f is piecewise regular, a robust estimator is given by the median of the
wavelet coefficients at the finest scale:
o {(X,¥j i)} ieo2r1_1 : 2771 = I wavelet coefficients of the noisy
data at the finest scale.

o If (f, 1) is small (f is regular on the support of 1),_1 «), one has:
(Xs i) = (W, 4.
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Wavelet thresholding

o If (f, 1) is large, it corresponds to a singularity of f, but for a
piecewise regular functions with isolated singularity, only few

coefficients (X, ); «) are affected at the finest scale.

@ Then (X, ) is a random variable of variance 0.

The noise standard deviation o is estimated by the formula (exact for
p=2/-1 independent Gaussian variables, of zero mean, and variance
o?):
Mx
0,6745

where My is the median of the coefficients { (X, k) }x—0.0/~1_1 at the
smallest scale.

~
~

Example:
f(x) = y/Jcos 2mx]| + noise (discretized on 1024 = 210 values)
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Example: f(x) = \/|cos 27 x| + noise

N \ \
* \ \
0.7} h
s
y
o
o
0.1 02 03 04 05 06 0.7 08 09 a

1 01 02 03 04 05 05 07 08 09

Kévin Polisano Wavelets and Applicatio



Example: f(x) = \/|cos 27 x| + noise
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Example: Piece-Regular
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Example: Wavelab denoising function

%Generation of a signal y

n=1024; dx=1/n; x=(0:n-1)/n;

alpha=0.1 % noise coefficient

y=sqrt (abs (cos (2*pi*x))) ;

or

y=MakeSignal (’Piece-Regular’,n);

h

y=y+alpha*randn(size(y)); % add Gaussian noise
plot(x,y) % plot of the noisy signal

% Denoising by hardtresholding on orthonormal wavelet coeff ’Symmlet 4’
out=ThreshWave (y) ;

plot(x,out) % plot the denoised signal
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Sparse representation and approximation

Analysis vs. synthesis

e Analysis: ®(f) = {(f, ¢p)}per
o Synthesis: f =3 (f,¢,)dp
Suppose that a sparse family of vectors {¢,}pcn has been selected to

approximate a signal f. An approximation can be recovered as an
orthogonal projection in the space Vp generated by these vectors.

© In a dual-synthesis problem, the orthogonal projection fp of f in Vp
is computed as above from the inner products {(f, ¢,)} provided by
an analysis operator, whose only a subset of such inner products is
selected and possibly thresholded.

@ In a dual-analysis problem, the decomposition coefficients of f
must be computed on a family of selected vectors {¢p}pcn, by
pursuit algorithms which compute approximation supports in highly
redundant dictionaries.
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Sparse representation and approximation

Approximation in bases vs. redundant dictionaries

@ Choose an orthogonal basis B = {¢,}cr for which the
representation is not redundant at all, so we get a representation
which is sparse and stable

e By selecting the first M coefficients (linear approximation)

o By selecting the M largest coefficients (non-linear approximation)
The size support M = |A| of fy; = fp needed to have a good
approximation error ||[f — fy|| depends on the regularity of f.

@ Choose a dictionary D = {¢p}per which is highly redundant in
order to obtain a more sparse representation (e.g. natural languages
use redundant dictionaries). ldentifying patterns or features consist
on finding which vectors (atoms, words, ...) to choose to
approximate

frfi=> apdp
peEN
Famous algorithms: Matching pursuit, Orthogonal Matching
Pursuit (OMP), Basis pursuit, ...
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Sparse representation and approximation

Moving from transforms to dictionaries

o "Xlets" (curvelets, bandlets, contourlet, ...) take advantage of the
image geometric regularity

@ Redundant dictionaries can improve approximation, compression
and denoising

@ Optimal approximation finding is NP-hard, only approximated with
matching or basis pursuits

@ Great impact to inverse problems

e Compressed sensing
e Super-resolution
e Source separation

@ Can be used for patter recognition but problems of instabilities

@ Deep learning made a breakthrough in classification and pattern
recognition (dictionaries are learned i.e linear operators/filters, but
need a lot of examples). Increase the level of adaptability.

= have wavelets become has-been?
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The Scattering Transform

Kévin Polisano Wavelets and Applications 265/291



Understanding deep convolutional networks

Supervised learning against high dimension

e Data in high dimension x € R? with d ~ 108

@ f(x) represents a label of a class (whose can be also big, e.g 2-103
for ImageNet) for classification tasks, or a real for regression.

e Training set of n samples {x;, y; = f(x;)}i<n (few samples per class)

@ Supervised learning aims at generalizing from the samples to predict
f(x) for new datas.

Intuitively, to do an interpolation in x we need somehow to average
among known samples {x;, y;} in the neighborhood of x, saying:

vx €[0,1]%, 3 € 0,17, [x —xll<e

then if the x;'s are uniformly distributed, it would require ¢ points to
cover [0,1]9 entirely!

Points are far away in high dimension = Curse of dimensionality
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Understanding deep convolutional networks

Kernel learning

© Representation. Change of variable ®(x) = {¢x(x) }k<a’
(features) in order to nearly linearize class bounderies:

X:(vl,...,vd)gd)(x):(v{,...,vc',)

@ Classifier. Find an hyperplan (that is an vector w orthogonal to
the hyperplan) which seperates the transformed data:

f(x) = sign({®(x), w) + b) = sign <Z Wi vy, + b>

k

Questions:
@ How to construct such a representation ¢7
@ What regularity is needed?
@ Can wavelets be useful to understand and draw CNN architectures?
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Understanding deep convolutional networks
CNN architecture

J. Hinton, Y. LeCun Le, Ranzato, Ng et. al.:

Hierarchical invariance unsupervised training
1 billion variables

ClI feature C2 feature
maps maps

S2 feature
| feaa;gre maps “5' Face
detector
Body
detector

Full
Connection

Subsampling Subsampling

filtering

Rectification Contrast Pooling / Subsampling

Normalization .

Wavelet filters

Credits: S. Mallat
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Understanding deep convolutional networks

CNN architecture: why are they so efficient for images classification?

Why convolutions? Which filters?

Why pooling? Why multi-stage and how deep?

Why and which non-linearities?

Why normalization?

What is the role of sparsity?

= what are the mathematical operators behind such architectures?

o o(z) Yann LeCun

p
P

Dimension

channels channels reduction o]0

Figure: Lj: sum of spatial convolutions across channels, subsampling. p: scalar
non-linearity (max(u,0), |ul, ...)
Credits: S. Mallat
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Understanding deep convolutional networks

The "3S" ingredients for reducing the dimensionality problem

@ Separability: variables separation can reduce the dimensionality
from d to K problems of dimension ¢ < d (e.g decomposing an
image 103 x 103 in small independant patches 8 x 8, whose
interactions between pixels are essentially local = SIFT). It is
important to make scales separation but also to capture their
interaction: deeper neurons can "see" greater portion of the image.

@ Symmetry: spatial symmetries produce translation/rotation/flip
invariance (e.g convolution filters induce translation invariance)
and reduce the dimensionality by eliminating some variables.

© Sparsity: pattern recognition consists on decomposing the problem
on sparse elementary structures in dictionaries (cat’s hears,
human's eyes, ...) in particular through the activation functions.

= take advantage both of a priori information hard-coded in the
network architecture and learning to design .
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Symmetry group

To know the regularity of f one can study it through local but also
global transformation such that symmetry group of f:

G={g:¥xeQ, f(gx)="~Ff(x)}

@ The functions g preserve the level sets Q; = {x : f(x) = t}, that is
if x € Q¢ and g € G then g.x € Q;. So it is easy to verify the
solutions of a level set has a structure of group.

o Information a priori, a symmetry subgroup H C G. If g € H then
x and g.x have the same label f(g.x) = f(x), so belong to the
same class of equivalence. The quotient of 2 by H is denoted by
Q\H, for xo € Q\H then it defines a class of equivalence:

Hy,={xeQ:gecHstgx=x}

Example: if xg is an image and f(xp) its label (cat/dog), then by
translating x = g.xg € Hy, the label remains the same f(x) = f(xo).

@ One can then reduce the number of variables (variability) within the
class of equivalence (reduction of dimensionality).
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Symmetry group

Lie group: infinitely small generators
Reduction of dimensionality in the continuous case:
dim(Q\H) = dim(Q) — dim(H)
Diffeomorphisms group
Let g : [0,1]% — [0,1]% be a C* function acting on the underlying
variable of x, namely u which is a low-dimensionnal quantity:
g-(x(v)) = x(g(v))
Examples
e Translation: g.x(u) = x(u — g) with g € R?
o Rotation: g.x(u) = x(Rgu) with g € [0, 27]
@ Globally invariant to the translation group = small

@ Locally invariant to small diffeomorphisms = HUGE
Continuous transports by successive action of generators f(x;) = f(xp)

Ox = {g.x}gec (orbit = differentiable surface of iso-label)
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Understanding deep convolutional networks

Using the information a priori on the symmetry group of f to define the
representation ® for the final classification/regression (last layer):

F(x) = (®(x), w) = D wico
K

In order that 7 is a good approximation of f, we impose that it has the
same invariants g € G that is G is a symmetry group of ®.
Two possibilities:
© G known and low dimension (translation, rotation, ...)
= constructing directly
@ G unknown and high dimension (diffeomorphisms)
= linearization + learning invariant through the classifier.

F(x) = F(g-x) = (®(x), w) = (®(g.x), w) = (®(x) — ®(g.x),w) =0
P(x)—P(gx)eV Lw

~ If V' is a hyperplan it implies to linearize transformations, by
considering small deformations g.
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Linearization of small deformations

Linearize group actions: g.x = x + 7.x so locally the tangent
hyperplan to the orbit Oy is given by 7 (Lie algebra).

For small deformations g.x(u) = x(u — 7(u)) we can write the
action 7 as a "global" action (the translation) and a small "local"
action (the deformation), since 7(u) &~ 7(up) + V7(up)(u — up) then

x(u—71(w)=x( (I—V7(u))(u—up)+ wvo— 7(wp) )

local deformation global translation

Distance for small deformations: |g|¢= ||T]|co+||V7|lo0

We do not know in advance what is the local range of
diffeomorphism symmetries.

Example: to classify images x of handwritten digits, certain
deformations of x will preserve a digit class but modify the class of
another digit.
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Linearization of small deformations

@ We shall linearize small diffeomorphims g via the change of variable
®(x), which is say Lipschitz-continuous if

3C>0,Y(x,8) €2 x G, [[o(g.x) — d(x)[[< Clglsllx]

@ The Radon—Nikodim property proves that the map that transforms
g into ®(g.x) is almost everywhere differentiable in the sense of
Gateaux. If |g|g is small, then ®(g.x) — ®(x) is closely
approximated by a bounded linear operator of g, which is the
Géateaux derivative. Locally, it thus nearly remains in a linear
space.

= The Lipschitz property of ® is difficult to be obtained. Indeed, a local
deformation is a dilation, so the representation will have to be based
on dilations, that is we will need to separate scales with the wavelet
transform.
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Stable invariants
Fourier is not relevant
If &(x) = {|X(w)|} then:
e Invariance to translations x.(t) = x(t — ¢)

Ve eR, ®(x)=d(x)

@ Not Lipschitz stable to small deformation x,(t) = x(t — 7(t))
where 7(t) = et for example. The Fourier transform of
x(t —71(t)) = x((1 — €)t) is X(w(1 + €)), so two "bumps" centered
in w = Fwp will be "shifted" toward low frequencies by a quantity
€wp, such that they are not superposed anymore and then

[®(xr) — ®(x)[|# €

= Wavelets are localized waveforms and are thus stable to
deformations, as opposed to Fourier sinusoidal waves
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Stable invariants
Why wavelets?

@ Wavelets are uniformly stable to deformations:

If a0 (£) = (= 7(£)) then

92 = acl< CsuplT7(e)

@ Wavelet separate multiscale information

@ Wavelets provide sparse representation
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Multiscale Wavelet Transform

o Complex wavelet 1 (u) = ¥?(u) + i?(u)

o Dilated 1D wavelet: (1) = 277/ Q)(27/Qu) with A = 274/Q

e For images with two variables u = (u1, u2) add a rotation r € G of
angles 2k /K for 0 < k < K:

7!))\(“) = 2_2j¢(2_jr_1u)’ A= (2_j’ r)

B x x ¢(u)
Wx = ( X*'@’A(u) )u)\

o If \(E(w)F—i— Z/\MZA(UJ)F: 1 then W is unitary: HWXH2: HXH2

@ Wavelet transform:
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Stable translation invariance

@ Xx x 1y is translation covariant, not invariant and

/x*w,\(u)duzo

e Translation invariant representation: [ M(x x 1) (u) du
@ Diffeomorphism stability: M commutes with diffeomorphims
o L2 stability: ||[Mh|= ||h|| and ||Mg — Mh||< ||lg — h]

= M(h)(u) = |h(u)|= \/|h*(u) 2+ hb(u) 2
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Wavelet translation invariance

@ The modulus |x % 1y, |= \/|x*¢}f’\l|2+|x*1/1§1|2 (pooling) is a
regular envelop

The average |x x ¥y, [x¢(t) is invariant to small translations
relatively to the support of ¢

Full translation invariance at the limit:

lim |x * 1y, |= /\x*wh(u)|du = |Ix *x ¥ 1
¢—1

@ First Wavelet transform modulus:

X*¢2J
W = [Wilx =
pyvv1 | 1‘ ( |X*’l/),\1| )/\

Second Wavelet transform modulus (for recovering high freq. lost):

’W2|X*U>\1:( x5 oy [ s )

[ 5 g | %

e Translation invariance by averaging ||x ¥, | * ¥, | * P, VA1, A2
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Scattering Network
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Credits: S. Mallat
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Scattering Network
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Credits: S. Mallat
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Scattering Properties

X % Qo
|X *¢)\1|*¢2J
S)x = [ % b [xthag [x o = | Ws|| Wal| Wi |x
[[|x % 4y, !*7!&2 WY

ALA2,A L
Lemma: |WiD: — D:W — k||< C||VT||so where Dyx(u) = x(u — 7(u))

Theorem (Mallat et al.)

For appropriate wavelets, a scattering is contractive
1Ssx = SuylI< lIx = ylI,
translations invariance and deformation stability:

lim HSJD x — Sux||I< C||IVT|lool|x]|
Credits: S. Mallat J=+
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Scattering Network

S0z = z * ¢gu

Fig. 2. A scattering propagator W applied to = computes the first layer of wavelet coefficients modulus U]z =
|zxx, | and outputs its local average S[0]z = zx ¢,s (black arrow). Applying W to the first layer signals U [\ ]z outputs
first order scattering coefficients S[A1] = U[M] x ¢»s (black arrows) and computes the propagated signal U[X;, Az]z
of the second layer. Applying W to each propagated signal U[p]z outputs S[p]z = Ulp]z * ¢3- (black arrows) and
computes a next layer of propagated signals.

Credits: S. Mallat
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Understanding deep convolutional networks

Simplified architecture: Deep Convolutional Trees

Architecture
@ Convolutional filters L;: band-limited wavelets
@ Pooling: L' norm as averaging
@ Nonlinear activation p: modulus

®(x) = S,x (scattering vector)

x(;) ®(z)

channels

Credits: S. Mallat
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Experiments and results

P i £
Supervised >y — €T
x S Jx Linear classifier y f( )

| |

® |Invariant to translation o Invariant to specific deformations
® Linearize small deformations ® Separates different pattern
o No learning ® Learning

@ MNIST dataset for digit classification: for a training of 50,000
digits the classification error of the Scattering Network was similar
to the Convolutional Network's (0.4 %)
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Experiments and results

@ CUReT dataset for textures classification: for a small training set
of textures 200 x 200 in 61 classes (46 per class), the classification
error with the Scattering Network achieves 0.2 %, far better than
Fourier transform’s one (1 %)
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Experiments and results

Scattering coefficients

Fig. 3. To display scattering coefficients, the disk covering the image frequency support is partitioned into sectors
Q[p], which depend upon the path p. (a): For m = 1, each Q[)] is a sector rotated by r; which approximates the
frequency support of ¥y,. (b): For m = 2, all @[\, A;] are obtained by subdividing each Q[X,].

/)/)\

{/\(//

) @

Fig. 4. (a) Two images z(u). (b) Fourier modulus |&(w)|. (c) First order scattering coefficients Sz[\;] displayed over
the frequency sectors of Figure 3(a). They are the same for both images. (d) Second order scattering coefficients
Sz[A1, Ao] over the frequency sectors of Figure 3(b). They are different for each image.
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Experiments and results

Scattering coefficients
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Fig. 7. (a): Image X (u) of a digit '3". (b): Arrays of windowed scattering coefficients S[p| X (u) of order m = 1, with «
sampled at intervals of 2/ = 8 pixels. (c): Windowed scattering coefficients S[p]X (u) of order m = 2.

(b) ()

Figure 4.3: (a): Example of CureT texture X (u). (b): Scattering coefficients S;[p|X,
for m = 1 and 27 equal to the image width. (c): Scattering coefficients S;[p]X (u), for
m=2.
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Experiments and results

Scattering coefficients

(@) (b) (© (d)

Fig. 5. (a) Realizations of two stationary processes X (u). Top: Brodatz texture. Bottom: Gaussian process. (b) The
power spectrum estimated from each realization is nearly the same. (c) First order scattering coefficients S[p]X are
nearly the same, for 27 equal to the image width. (d) Second order scattering coefficients S[p]X are clearly different.
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Take home message

Interpretation of convolutional networks
@ Deep convolutional network are really efficients to approximate
functions in very high dimension
@ Compute multiscale invariants of complex symmetries and learn
sparse patterns

@ Many mathematical questions still open (notion of regularity,
complexity, approximation theorems, ...)
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