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set.
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Introduction
@ A collection of individual graphs with the same vertex set but different edge
set.
@ graphs with varying interactions over time, i.e. Dynamic Graphs
@ graphs with multiple type of connectivity, i.e. Multiplex Graphs

Taken from [SLT10]
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Introduction

@ Graph wavelets are powerful tools to for multi-scale analysis in static graphs.
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Introduction

@ Graph wavelets are powerful tools to for multi-scale analysis in static graphs.
@ What about multislice graphs?

Expectation

Multislice graph wavelets, which can be adapted to the varying graph topology,
may give a better suited analysis than the analysis on a single slice.
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A Quick Recap on SGWT
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A Quick Recap on SGWT

Variable Classical Graph analogy
space variable X nodes
Fourier variable w Aj

Fourier basis e Jwx u;

" oo . N N
Fourier transform | f(w) = [ f(x)e™™dx | f(A\;) = > f(j)ui())
—o0 Jj=1

A scaled filter D(sw) g(s\i)
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A Quick Recap on SGWT

Variable Classical Graph analogy
space variable X nodes
Fourier variable w Aj

Fourier basis e Jwx u;

Fourier transform f(w): [ f(x)e " dx
— 00

A scaled filter

D(sw)

) = 3° F()uil)

Jj=1
g(s\i)

o In classical signal processing, the wavelet 15 5(x) at scale s and location a for
a given "mother wavelet" v(x) are:

Us.alx) = ¥ (X - a)

S
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A Quick Recap on SGWT

Variable Classical Graph analogy
space variable X nodes
Fourier variable w A

Fourier basis e Jwx u;
" 0 . N N
Fourier transform | f(w) = [ f(x)e™™dx | f(A\;) = > f(j)ui())
—o00 Jj=1
A scaled filter P(sw) g(s\;)

o In classical signal processing, the wavelet 15 5(x) at scale s and location a for
a given "mother wavelet" v(x) are:

X —a

¥s,a(x) :zﬁ( ) = Pg(x) = i/m e I (sw)e I du

2 J_
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@ Then, the graph analogous of v ,(x) is

Vs,a(x) = % /°°

N
—o0

e—ij,&;(sw)e_jwadw — ws,a(i) = Z UJ(I)g(S)\J)uJ(a)

j=1

o = = = Do



@ Then, the graph analogous of s ,(x) is:
0 N

s a(x) = %/ e_j‘“’x'z;(svv)e_j“’adw — s o(1) = Z uj(ig(sh)uj(a)

— 0 =1

@ In a matrix-vector product:

Ys.0=UTg(s\)US,
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@ Then, the graph analogous of s ,(x) is:
Y : u
Vs,a(x) = E/ e N (sw)e ™ dw — s 4 (i) = Z uj(ig(sh)uj(a)

— 0 =1

@ In a matrix-vector product:

Ys.0=UTg(s\)US,

@ One needs the scaling function h(\;) to capture the residual low-pass
components:

b2 = UTh(A)US,
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Then, the graph analogous of )5 ,(x) is

uj(i)g(sA;)uj(a)

N
=1

s a(x) = %/_ e Iwx, (svv)e —wagyy — s a(i) = .

J

@ In a matrix-vector product:

Ys.0=UTg(s\)US,

One needs the scaling function h()\;) to capture the residual low-pass
components:

b2 = UTh(A)US,

If we put them together, we obtain a set of vectors:

F= {Qba =1 U{"/}asj}a—lj 1
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Tight Wavelet Frames

e F forms a frame of h(V), if there exists frame bounds A, B > 0 such that

weh(V), AlfIF <Y IIEV)II” < BlIfII?
feF
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Tight Wavelet Frames

e F forms a frame of h(V), if there exists frame bounds A, B > 0 such that

weh(V), AlfIF <Y IIEV)II” < BlIfII?
feF

e Hammond et.al.provide:

)\E[O,)\N]

where G(\) = h?(\) + Zle g2(siN).
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Tight Wavelet Frames

o A tight frame satisfies A= B = G()) for all \'s.
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Tight Wavelet Frames

o A tight frame satisfies A= B = G()) for all \'s.

@ A Parseval frame is a normalized tight frame with G(\) = A= B =1 for all
A's.
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Tight Wavelet Frames

o A tight frame satisfies A= B = G()) for all \'s.
@ A Parseval frame is a normalized tight frame with G(\) = A= B =1 for all

A's.
@ Various Parseval wavelet frames have been adapted to graphs:

§(2): filter response

T 3 3 Q
A: laplacian's eigenvalues / graph frequencies

Meyer

Leonardi et.al.

H 3

Papadakis

00

[ T 3 3 T

Simoncelli

BAA

Meyer with more scales
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Tensors and Multislice Graphs

e A tensor A € R*2x-la is an algebraic object that can interpret d
dimensional data.
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Tensors and Multislice Graphs

e A tensor A € R*2x-la is an algebraic object that can interpret d
dimensional data.

RNXNXK

@ A three dimensional tensor A € can interpret a multislice graph.

NxNxK

A

@ Each frontal slice A.., is an adjacency matrix.
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Tensor Operations

e Multiplication between a 3D tensor A € R'*/*K and a matrix B € RM*/ is
defined as:

I
(A x1B)jem = Y AjjBmi

i=1
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Tensor Operations

defined as:

e Multiplication between a 3D tensor A € R'*/*K and a matrix B € RM*/ is

I
(A x1B)jem = Y AjjBmi

i=1
the dimension n:

@ Matricization or Unfolding A(,,) is a reordered concatenation of the slices in

Figure: Taken from [STK'15]
O @ «Er (2 Dae




Tensor Analysis

Proposition

A tensor A € RNXNXK with A, = AT, for all k =1,.
order singular value decomposition (| HOS VD) decomposmon

A=8X1UX2UX3V

with S € RVXNXK and U € RV*N and V € RX*K are orthonormal
matrices i.e. VTV =1, UTU = I.

, K has the the higher

Nx NxK _ NxNxK

Leonardi et.al.
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Eigennetworks

@ An eigennetwork tensor S’ € RNXN>K is defined as:

S/:SX1UX2UOFSIZ.AX3VT

o = = = Do
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@ An eigennetwork tensor S’ € RNXN>K is defined as:
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e Eachslice S/, = US..,UT, called as eigennetwork, are
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Eigennetworks

o An eigennetwork tensor S’ € RNXNxK is defined as:
8

S/:SX1UX2UOFSIZ.AX3VT

e Eachslice S/, = US..,UT, called as eigennetwork, are
» Symmetric i.e. (S..)" =S/
» Orthogonal in the sense of scalar product i.e. (S',,S.,) =0 for i # .
What do they mean?

@ The first eigennetwork S’.; turns to be the average of all adjacency matrices.
g 1 g ) y
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Eigennetworks

@ An eigennetwork tensor S’ € RNXN>K is defined as:

SI:SX1UX2UOFS/:.AX3VT

e Eachslice S/, = US..,UT, called as eigennetwork, are
» Symmetric i.e. (S..)" =S/
» Orthogonal in the sense of scalar product i.e. (S',,S.,) =0 for i # .

What do they mean?

@ The first eigennetwork S!,; turns to be the average of all adjacency matrices.

o Each eigennetwork captures a component of the variation in the edge weights
across the networks.
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How to compute?

@ A quick calculation shows:

-
S, =A X3 VT < S:/:k = thkA::t

t=1
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How to compute?

@ A quick calculation shows:

;
§'=Ax3VT = S, => VuA

t=1

e With the unfolding in third dimension A3y = VEZWT, for K << N ,one can
efficiently compute V by decomposing A3)A;y’ = VZ2VT.

e O/
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=] & - = o



SGWT meets with Multislice Graphs

o Each eigennetwork captures a component of the variation.
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SGWT meets with Multislice Graphs

o Each eigennetwork captures a component of the variation.
@ Also, by definition, one has

K
A::k = Z ths;/;t
t=1
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o Each eigennetwork captures a component of the variation.
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K
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SGWT meets with Multislice Graphs

Each eigennetwork captures a component of the variation.

Also, by definition, one has

K
A::k = Z ths;/;t
t=1

A new graph can be obtained by combining eigennetworks:

K
A=) oS, st A'>0
t=1

Depending on «;'s and S..;, the edge weights associated to relevant variation
components are emphasized in the new network.
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SGWT meets with Multislice Graphs

Each eigennetwork captures a component of the variation.

Also, by definition, one has

K
A::k = Z ths;/;t
t=1

A new graph can be obtained by combining eigennetworks:

K
A=) oS, st A'>0
t=1

Depending on «;'s and S..;, the edge weights associated to relevant variation
components are emphasized in the new network.

@ From the new graph Laplacian L’ = D’ — A’ one has a new SGWT frame on
it.

e



Out“ne

© Experiments



Experiments

@ Two illustrations for this framework is given:

» Multiplex Grid Graph on Images
» Dynamic Brain Graphs
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Experiments

@ Two illustrations for this framework is given:

» Multiplex Grid Graph on Images
» Dynamic Brain Graphs

@ In the first one, we have four underlying 2D grid graphs for an image:

a0 9 a
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Experiments

@ Two illustrations for this framework is given:

» Multiplex Grid Graph on Images
» Dynamic Brain Graphs

@ In the first one, we have four underlying 2D grid graphs for an image:

OOOQ
O—Q—OO

oo o
(@)

@ The resultant decomposition gives:

—0.47 0.73 0 0.59

_|-049 —069 0 054 )
V=1_052 —001 071 —047 W'thsk—ZVtkAt (1)

-0.52 —-0.01 -0.71 -0.49

e



Experiments

@ A network set is created from these eigennetworks and a localized filter
illustrated on them:

L L
(b) (c)
[ ] L2 [
(d) (e) ()

Figure: (a)filter location,(b) A} = —0.5S!;, (c)A3 = —0.5S!; + 0.7S%,,(d)A; =
—0.5S%; — 0.7S!,,(e)A} = —0.5S; 4 0.8S!5,(f)A; = —0.5S!, — 0.85/5

e B



Experiments: Dynamic Brain Graphs

@ In the experiments, 15 healthy subjects were periodically shown a short movie
excerpt followed by a resting period.
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Experiments: Dynamic Brain Graphs
@ In the experiments, 15 healthy subjects were periodically shown a short movie

excerpt followed by a resting period.
@ The collected fMRI data is transformed to the regional mean activity and

averaged across subjects.
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Experiments: Dynamic Brain Graphs

@ In the experiments, 15 healthy subjects were periodically shown a short movie
excerpt followed by a resting period.

@ The collected fMRI data is transformed to the regional mean activity and
averaged across subjects.

(b)

@ By a sliding window approach, the correlations of different regions are
computed and used as edge weights.

At

Brain regions

s

Brain regions

(c) (d)
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Experiments:Dynamic Brain Graph

@ The eigennetworks S/.,'s and v, 's:
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Experiments: Dynamic Brain Graph

e Two adjacency matrices A] = —0.1S] 4+ 0.2S/, and A},
are generated:

0.1} — 0.35,

10 20 30 40

50 80 70
e

o = = = Do



Experiments:Dynamic Brain Graph

@ In the end, two SGWT transforms are obtained.
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Experiments:Dynamic Brain Graph

@ In the end, two SGWT transforms are obtained.

@ They are applied to the regional activity signal.
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@ In the end, two SGWT transforms are obtained.

@ They are applied to the regional activity signal.
@ The energy of scaling and wavelet coefficients are computed in both frame.
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Experiments:Dynamic Brain Graph

@ In the end, two SGWT transforms are obtained.

@ They are applied to the regional activity signal.

@ The energy of scaling and wavelet coefficients are computed in both frame.
o Finally, the difference is plotted:

Energy of coefficients

e B



Outline

° Conclusion






Conclusion

@ An extension of SGWT on multislice graphs is presented.
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Conclusion

@ An extension of SGWT on multislice graphs is presented.

@ This extension allows us to capture the variation across the graphs.
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Conclusion

@ An extension of SGWT on multislice graphs is presented.
@ This extension allows us to capture the variation across the graphs.
@ It can be used for different GSP tools.

e B
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