Tight Wavelet Frames on Multislice Graphs

Nora Leonardi, Dimitri Van de Ville

presented by Yusuf Yigit Pilavci

> 10/06/2020

Outline

(1) Introduction
(2) Tight Wavelet Frames
(3) Multislice Graphs and Tensors
(4) SGWT for Multislice Graphs
(5) Experiments
(6) Conclusion

Introduction

- A collection of individual graphs with the same vertex set but different edge set.

Introduction

- A collection of individual graphs with the same vertex set but different edge set.
- graphs with varying interactions over time, i.e. Dynamic Graphs

Introduction

- A collection of individual graphs with the same vertex set but different edge set.
- graphs with varying interactions over time, i.e. Dynamic Graphs
- graphs with multiple type of connectivity, i.e. Multiplex Graphs

Taken from [SLT10]

Introduction

- Graph wavelets are powerful tools to for multi-scale analysis in static graphs.

Introduction

- Graph wavelets are powerful tools to for multi-scale analysis in static graphs.
- What about multislice graphs?

Introduction

- Graph wavelets are powerful tools to for multi-scale analysis in static graphs.
- What about multislice graphs?

Expectation

Multislice graph wavelets, which can be adapted to the varying graph topology, may give a better suited analysis than the analysis on a single slice.

Outline

(1) Introduction
(2) Tight Wavelet Frames
(3) Multislice Graphs and Tensors

4 SGWT for Multislice Graphs
(5) Experiments
(6) Conclusion

A Quick Recap on SGWT

A Quick Recap on SGWT

Variable	Classical	Graph analogy
space variable	x	nodes
Fourier variable	w	λ_{i}
Fourier basis	$e^{-j w x}$	\mathbf{u}_{i}
Fourier transform	$\hat{f}(w)=\int_{-\infty}^{\infty} f(x) e^{-j w x} d x$	$\hat{f}\left(\lambda_{i}\right)=\sum_{j=1}^{N} f(j) \mathbf{u}_{i}(j)$
A scaled filter	$\hat{\psi}(s w)$	$g\left(s \lambda_{i}\right)$

A Quick Recap on SGWT

Variable	Classical	Graph analogy
space variable	x	nodes
Fourier variable	w	λ_{i}
Fourier basis	$e^{-j w x}$	\mathbf{u}_{i}
Fourier transform	$\hat{f}(w)=\int_{-\infty}^{\infty} f(x) e^{-j w x} d x$	$\hat{f}\left(\lambda_{i}\right)=\sum_{j=1}^{N} f(j) \mathbf{u}_{i}(j)$
A scaled filter	$\hat{\psi}(s w)$	$g\left(s \lambda_{i}\right)$

- In classical signal processing, the wavelet $\psi_{s, a}(x)$ at scale s and location a for a given "mother wavelet" $\psi(x)$ are:

$$
\psi_{s, a}(x)=\psi\left(\frac{x-a}{s}\right)
$$

A Quick Recap on SGWT

Variable	Classical	Graph analogy
space variable	x	nodes
Fourier variable	w	λ_{i}
Fourier basis	$e^{-j w x}$	\mathbf{u}_{i}
Fourier transform	$\hat{f}(w)=\int_{-\infty}^{\infty} f(x) e^{-j w x} d x$	$\hat{f}\left(\lambda_{i}\right)=\sum_{j=1}^{N} f(j) \mathbf{u}_{i}(j)$
A scaled filter	$\hat{\psi}(s w)$	$g\left(s \lambda_{i}\right)$

- In classical signal processing, the wavelet $\psi_{s, a}(x)$ at scale s and location a for a given "mother wavelet" $\psi(x)$ are:

$$
\psi_{s, a}(x)=\psi\left(\frac{x-a}{s}\right) \Longleftrightarrow \psi_{s, a}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-j \omega x} \hat{\psi}(s w) e^{-j \omega a} d \omega
$$

- Then, the graph analogous of $\psi_{s, a}(x)$ is:

$$
\psi_{s, a}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-j \omega x} \hat{\psi}(s w) e^{-j \omega a} d \omega \rightarrow \psi_{s, a}(i)=\sum_{j=1}^{N} \mathbf{u}_{j}(i) g\left(s \lambda_{j}\right) \mathbf{u}_{j}(a)
$$

- Then, the graph analogous of $\psi_{s, a}(x)$ is:

$$
\psi_{s, a}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-j \omega x} \hat{\psi}(s w) e^{-j \omega a} d \omega \rightarrow \psi_{s, a}(i)=\sum_{j=1}^{N} \mathbf{u}_{j}(i) g\left(s \lambda_{j}\right) \mathbf{u}_{j}(a)
$$

- In a matrix-vector product:

$$
\psi_{\mathbf{s}, a}=U^{T} g(s \wedge) U \delta_{a}
$$

- Then, the graph analogous of $\psi_{s, a}(x)$ is:

$$
\psi_{s, a}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-j \omega x} \hat{\psi}(s w) e^{-j \omega a} d \omega \rightarrow \psi_{s, a}(i)=\sum_{j=1}^{N} \mathbf{u}_{j}(i) g\left(s \lambda_{j}\right) \mathbf{u}_{j}(a)
$$

- In a matrix-vector product:

$$
\psi_{s, a}=U^{T} g(s \wedge) U \delta_{a}
$$

- One needs the scaling function $h\left(\lambda_{i}\right)$ to capture the residual low-pass components:

$$
\phi_{a}=U^{T} h(\Lambda) U \delta_{a}
$$

- Then, the graph analogous of $\psi_{s, a}(x)$ is:

$$
\psi_{s, a}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-j \omega x} \hat{\psi}(s w) e^{-j \omega a} d \omega \rightarrow \psi_{s, a}(i)=\sum_{j=1}^{N} \mathbf{u}_{j}(i) g\left(s \lambda_{j}\right) \mathbf{u}_{j}(a)
$$

- In a matrix-vector product:

$$
\psi_{s, a}=U^{T} g(s \wedge) U \delta_{a}
$$

- One needs the scaling function $h\left(\lambda_{i}\right)$ to capture the residual low-pass components:

$$
\phi_{a}=U^{T} h(\Lambda) U \delta_{a}
$$

- If we put them together, we obtain a set of vectors:

$$
F=\left\{\phi_{a}\right\}_{a=1}^{n} \cup\left\{\psi_{a, s_{j}}\right\}_{a=1, j=1}^{n, J}
$$

Tight Wavelet Frames

- F forms a frame of $I_{2}(\mathcal{V})$, if there exists frame bounds $A, B>0$ such that

$$
\forall v \in I_{2}(\mathcal{V}), \quad A\|f\|^{2} \leq \sum_{\mathbf{f} \in F}\|\langle\mathbf{f}, \mathbf{v}\rangle\|^{2} \leq B\|f\|^{2}
$$

Tight Wavelet Frames

- F forms a frame of $l_{2}(\mathcal{V})$, if there exists frame bounds $A, B>0$ such that

$$
\forall v \in I_{2}(\mathcal{V}), \quad A\|f\|^{2} \leq \sum_{\mathbf{f} \in F}\|\langle\mathbf{f}, \mathbf{v}\rangle\|^{2} \leq B\|f\|^{2}
$$

- Hammond et.al.provide:

$$
\begin{aligned}
& A=\min _{\lambda \in\left[0, \lambda_{N}\right]} G(\lambda) \\
& B=\max _{\lambda \in\left[0, \lambda_{N}\right]} G(\lambda)
\end{aligned}
$$

where $G(\lambda)=h^{2}(\lambda)+\sum_{j=1}^{J} g^{2}\left(s_{j} \lambda\right)$.

Tight Wavelet Frames

- A tight frame satisfies $A=B=G(\lambda)$ for all λ 's.

Tight Wavelet Frames

- A tight frame satisfies $A=B=G(\lambda)$ for all λ 's.
- A Parseval frame is a normalized tight frame with $G(\lambda)=A=B=1$ for all λ 's.

Tight Wavelet Frames

- A tight frame satisfies $A=B=G(\lambda)$ for all λ 's.
- A Parseval frame is a normalized tight frame with $G(\lambda)=A=B=1$ for all λ 's.
- Various Parseval wavelet frames have been adapted to graphs:

Meyer

Papadakis

Simoncelli

Meyer with more scales

Outline

(1) Introduction
(2) Tight Wavelet Frames
(3) Multislice Graphs and Tensors

4 SGWT for Multislice Graphs
(5) Experiments

6 Conclusion

Tensors and Multislice Graphs

- A tensor $\mathcal{A} \in \mathbb{R}^{l_{1} \times l_{2} \times \ldots l_{d}}$ is an algebraic object that can interpret d dimensional data.

Tensors and Multislice Graphs

- A tensor $\mathcal{A} \in \mathbb{R}^{\boldsymbol{I}_{1} \times I_{2} \times \ldots I_{d}}$ is an algebraic object that can interpret d dimensional data.
- A three dimensional tensor $\mathcal{A} \in \mathbb{R}^{N \times N \times K}$ can interpret a multislice graph.

- Each frontal slice $A_{:: k}$ is an adjacency matrix.

Tensor Operations

Tensor Operations

- Multiplication between a 3D tensor $\mathcal{A} \in \mathbb{R}^{I \times J \times K}$ and a matrix $\mathrm{B} \in \mathbb{R}^{M \times I}$ is defined as:

$$
\left(\mathcal{A} \times_{1} \mathrm{~B}\right)_{j k m}=\sum_{i=1}^{\prime} \mathcal{A}_{i j k} \mathrm{~B}_{m i}
$$

Tensor Operations

- Multiplication between a 3 D tensor $\mathcal{A} \in \mathbb{R}^{I \times J \times K}$ and a matrix $\mathrm{B} \in \mathbb{R}^{M \times I}$ is defined as:

$$
\left(\mathcal{A} \times_{1} \mathrm{~B}\right)_{j k m}=\sum_{i=1}^{\prime} \mathcal{A}_{i j k} \mathrm{~B}_{m i}
$$

- Matricization or Unfolding $\mathrm{A}_{(n)}$ is a reordered concatenation of the slices in the dimension n :

Figure: Taken from [STK ${ }^{+}$15]

Tensor Analysis

Proposition

A tensor $\mathcal{A} \in \mathbb{R}^{N \times N \times K}$ with $\mathrm{A}_{:: k}=\mathrm{A}_{:: k}^{T}$ for all $k=1, \ldots, K$ has the the higher order singular value decomposition (HOSVD) decomposition:

$$
\mathcal{A}=\mathcal{S} \times{ }_{1} \mathrm{U} \times{ }_{2} \mathrm{U} \times{ }_{3} \mathrm{~V}
$$

with $\mathcal{S} \in \mathbb{R}^{N \times N \times K}$ and $\mathrm{U} \in \mathbb{R}^{N \times N}$ and $\mathrm{V} \in \mathbb{R}^{K \times K}$ are orthonormal matrices i.e. $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}, \mathrm{U}^{\top} \mathrm{U}=\mathrm{I}$.

Eigennetworks

- An eigennetwork tensor $\mathcal{S}^{\prime} \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$
\mathcal{S}^{\prime}=\mathcal{S} \times{ }_{1} \mathrm{U} \times_{2} \mathrm{U} \text { or } \mathcal{S}^{\prime}=\mathcal{A} \times_{3} \mathrm{~V}^{\top}
$$

Eigennetworks

- An eigennetwork tensor $\mathcal{S}^{\prime} \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$
\mathcal{S}^{\prime}=\mathcal{S} \times{ }_{1} \mathrm{U} \times{ }_{2} \mathrm{U} \text { or } \mathcal{S}^{\prime}=\mathcal{A} \times_{3} \mathrm{~V}^{T}
$$

- Each slice $S_{:: k}^{\prime}=U S_{:: k} U^{T}$, called as eigennetwork, are

Eigennetworks

- An eigennetwork tensor $\mathcal{S}^{\prime} \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$
\mathcal{S}^{\prime}=\mathcal{S} \times{ }_{1} \mathrm{U} \times{ }_{2} \mathrm{U} \text { or } \mathcal{S}^{\prime}=\mathcal{A} \times_{3} \mathrm{~V}^{T}
$$

- Each slice $\mathrm{S}_{:: \mathrm{k}}^{\prime}=\mathrm{US}::: \mathrm{k} \mathrm{U}^{T}$, called as eigennetwork, are
- Symmetric i.e. $\left.\left(S_{: k}^{\prime}\right)\right)^{T}=S_{:!k}^{\prime}$

Eigennetworks

- An eigennetwork tensor $\mathcal{S}^{\prime} \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$
\mathcal{S}^{\prime}=\mathcal{S} \times{ }_{1} \mathrm{U} \times{ }_{2} \mathrm{U} \text { or } \mathcal{S}^{\prime}=\mathcal{A} \times_{3} \mathrm{~V}^{T}
$$

- Each slice $S_{::: k}^{\prime}=U S_{:: k} U^{T}$, called as eigennetwork, are
- Symmetric i.e. $\left(S_{:: k}^{\prime}\right)^{T}=S_{:: k}^{\prime}$
- Orthogonal in the sense of scalar product i.e. $\left\langle S_{: \prime:}^{\prime}, S_{:!b b}^{\prime}\right\rangle=0$ for $i \neq j$.

Eigennetworks

- An eigennetwork tensor $\mathcal{S}^{\prime} \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$
\mathcal{S}^{\prime}=\mathcal{S} \times{ }_{1} \mathrm{U} \times{ }_{2} \mathrm{U} \text { or } \mathcal{S}^{\prime}=\mathcal{A} \times_{3} \mathrm{~V}^{T}
$$

- Each slice $S_{:: k}^{\prime}=U S_{:: k} U^{T}$, called as eigennetwork, are
- Symmetric i.e. $\left(S_{: k}^{\prime}\right)^{T}=S_{:: k}^{\prime}$
- Orthogonal in the sense of scalar product i.e. $\left\langle S_{:: a}^{\prime}, S_{: ~}^{\prime}, b\right\rangle=0$ for $i \neq j$.

What do they mean?

Eigennetworks

- An eigennetwork tensor $\mathcal{S}^{\prime} \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$
\mathcal{S}^{\prime}=\mathcal{S} \times{ }_{1} \mathrm{U} \times{ }_{2} \mathrm{U} \text { or } \mathcal{S}^{\prime}=\mathcal{A} \times_{3} \mathrm{~V}^{T}
$$

- Each slice $S_{::: k}^{\prime}=U S_{:: k} U^{T}$, called as eigennetwork, are
- Symmetric i.e. $\left.\left(S_{:!k}^{\prime}\right)\right)^{T}=S_{:!k}^{\prime}$
- Orthogonal in the sense of scalar product i.e. $\left\langle S_{:: a}^{\prime}, S_{: ~}^{\prime}: b\right\rangle=0$ for $i \neq j$.

What do they mean?

- The first eigennetwork $S_{:!1}^{\prime}$ turns to be the average of all adjacency matrices.

Eigennetworks

- An eigennetwork tensor $\mathcal{S}^{\prime} \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$
\mathcal{S}^{\prime}=\mathcal{S} \times{ }_{1} \mathrm{U} \times{ }_{2} \mathrm{U} \text { or } \mathcal{S}^{\prime}=\mathcal{A} \times_{3} \mathrm{~V}^{T}
$$

- Each slice $S_{:: k}^{\prime}=U S_{:: k} U^{T}$, called as eigennetwork, are
- Symmetric i.e. $\left(S_{:: k}^{\prime}\right)^{T}=S_{:: k}^{\prime}$
- Orthogonal in the sense of scalar product i.e. $\left\langle S_{:: a}^{\prime}, S_{: ~}^{\prime}: b\right\rangle=0$ for $i \neq j$.

What do they mean?

- The first eigennetwork $S_{:!1}^{\prime}$ turns to be the average of all adjacency matrices.
- Each eigennetwork captures a component of the variation in the edge weights across the networks.

How to compute?

- A quick calculation shows:

$$
\mathcal{S}^{\prime}=\mathcal{A} \times{ }_{3} \mathrm{~V}^{T} \Longleftrightarrow \mathrm{~S}_{:: k}^{\prime}=\sum_{t=1}^{T} \mathrm{~V}_{t k} \mathrm{~A}_{:: t}
$$

How to compute?

- A quick calculation shows:

$$
\mathcal{S}^{\prime}=\mathcal{A} \times{ }_{3} \mathrm{~V}^{T} \Longleftrightarrow \mathrm{~S}_{:: k}^{\prime}=\sum_{t=1}^{T} \mathrm{~V}_{t k} \mathrm{~A}_{:: t}
$$

- With the unfolding in third dimension $\mathrm{A}_{(3)}=\mathrm{V} \Sigma \mathrm{W}^{T}$, for $K \ll N$, one can efficiently compute V by decomposing $\mathrm{A}_{(3)} \mathrm{A}_{(3)}{ }^{T}=\mathrm{V} \Sigma^{2} \mathrm{~V}^{T}$.

Outline

(1) Introduction
(2) Tight Wavelet Frames
(3) Multislice Graphs and Tensors
(4) SGWT for Multislice Graphs
(5) Experiments
(6) Conclusion

SGWT meets with Multislice Graphs

- Each eigennetwork captures a component of the variation.

SGWT meets with Multislice Graphs

- Each eigennetwork captures a component of the variation.
- Also, by definition, one has

$$
\mathrm{A}_{:: k}=\sum_{t=1}^{K} \mathrm{~V}_{k t} \mathrm{~S}_{:: t}^{\prime}
$$

SGWT meets with Multislice Graphs

- Each eigennetwork captures a component of the variation.
- Also, by definition, one has

$$
\mathrm{A}_{:: k}=\sum_{t=1}^{K} \mathrm{~V}_{k t} \mathrm{~S}_{:: t}^{\prime}
$$

- A new graph can be obtained by combining eigennetworks:

$$
\mathrm{A}^{\prime}=\sum_{t=1}^{K} \alpha_{t} \mathrm{~S}_{:: t}^{\prime} \quad \text { s.t. } \mathrm{A}^{\prime} \geq 0
$$

SGWT meets with Multislice Graphs

- Each eigennetwork captures a component of the variation.
- Also, by definition, one has

$$
\mathrm{A}_{\because: k}=\sum_{t=1}^{K} \mathrm{~V}_{k t} \mathrm{~S}_{:: t}^{\prime}
$$

- A new graph can be obtained by combining eigennetworks:

$$
\mathrm{A}^{\prime}=\sum_{t=1}^{K} \alpha_{t} \mathrm{~S}_{:: t}^{\prime} \quad \text { s.t. } \mathrm{A}^{\prime} \geq 0
$$

- Depending on α_{t} 's and $S_{:: t}$, the edge weights associated to relevant variation components are emphasized in the new network.

SGWT meets with Multislice Graphs

- Each eigennetwork captures a component of the variation.
- Also, by definition, one has

$$
\mathrm{A}_{\because: k}=\sum_{t=1}^{K} \mathrm{~V}_{k t} \mathrm{~S}_{:: t}^{\prime}
$$

- A new graph can be obtained by combining eigennetworks:

$$
\mathrm{A}^{\prime}=\sum_{t=1}^{K} \alpha_{t} \mathrm{~S}_{:: t}^{\prime} \quad \text { s.t. } \mathrm{A}^{\prime} \geq 0
$$

- Depending on α_{t} 's and $S_{:: t}$, the edge weights associated to relevant variation components are emphasized in the new network.
- From the new graph Laplacian $\mathrm{L}^{\prime}=\mathrm{D}^{\prime}-\mathrm{A}^{\prime}$, one has a new SGWT frame on it.

Outline

(1) Introduction
(2) Tight Wavelet Frames
(3) Multislice Graphs and Tensors

4 SGWT for Multislice Graphs

(5) Experiments

Experiments

- Two illustrations for this framework is given:
- Multiplex Grid Graph on Images
- Dynamic Brain Graphs

Experiments

- Two illustrations for this framework is given:
- Multiplex Grid Graph on Images
- Dynamic Brain Graphs
- In the first one, we have four underlying 2D grid graphs for an image:

Experiments

- Two illustrations for this framework is given:
- Multiplex Grid Graph on Images
- Dynamic Brain Graphs
- In the first one, we have four underlying 2D grid graphs for an image:

- The resultant decomposition gives:

$$
\mathrm{V}=\left[\begin{array}{cccc}
-0.47 & 0.73 & 0 & 0.59 \tag{1}\\
-0.49 & -0.69 & 0 & 0.54 \\
-0.52 & -0.01 & 0.71 & -0.47 \\
-0.52 & -0.01 & -0.71 & -0.49
\end{array}\right] \text { with } \mathrm{S}_{::: k}^{\prime}=\sum_{t=1}^{4} \mathrm{~V}_{t k} \mathrm{~A}_{:: t}
$$

Experiments

- A network set is created from these eigennetworks and a localized filter illustrated on them:

Figure: (a)filter location, (b) $\mathrm{A}_{1}^{\prime}=-0.5 \mathrm{~S}_{!: 1}^{\prime}$, (c) $\mathrm{A}_{2}^{\prime}=-0.5 \mathrm{~S}_{!: 1}^{\prime}+0.7 \mathrm{~S}_{:: 2}^{\prime}$, (d) $\mathrm{A}_{3}^{\prime}=$ $-0.5 S_{:!1}^{\prime}-0.7 S_{:: 2}^{\prime},(e) A_{4}^{\prime}=-0.5 S_{:: 1}^{\prime}+0.8 S_{:!3}^{\prime},(f) A_{5}^{\prime}=-0.5 S_{:: 1}^{\prime}-0.8 S_{:: 3}^{\prime}$

Experiments: Dynamic Brain Graphs

- In the experiments, 15 healthy subjects were periodically shown a short movie excerpt followed by a resting period.

Experiments: Dynamic Brain Graphs

- In the experiments, 15 healthy subjects were periodically shown a short movie excerpt followed by a resting period.
- The collected fMRI data is transformed to the regional mean activity and averaged across subjects.

Experiments: Dynamic Brain Graphs

- In the experiments, 15 healthy subjects were periodically shown a short movie excerpt followed by a resting period.
- The collected fMRI data is transformed to the regional mean activity and averaged across subjects.

- By a sliding window approach, the correlations of different regions are computed and used as edge weights.

Experiments:Dynamic Brain Graph

- The eigennetworks $S_{::!}^{\prime}$'s and v_{k} 's:

Experiments: Dynamic Brain Graph

- Two adjacency matrices $\mathrm{A}_{1}^{\prime}=-0.1 \mathrm{~S}_{1}^{\prime}+0.2 \mathrm{~S}_{:: 2}^{\prime}$ and $\mathrm{A}_{2}^{\prime}=-0.1 \mathrm{~S}_{1}^{\prime}-0.3 \mathrm{~S}_{:: 2}^{\prime}$ are generated:

Experiments:Dynamic Brain Graph

- In the end, two SGWT transforms are obtained.

Experiments:Dynamic Brain Graph

- In the end, two SGWT transforms are obtained.
- They are applied to the regional activity signal.

Experiments:Dynamic Brain Graph

- In the end, two SGWT transforms are obtained.
- They are applied to the regional activity signal.
- The energy of scaling and wavelet coefficients are computed in both frame.

Experiments:Dynamic Brain Graph

- In the end, two SGWT transforms are obtained.
- They are applied to the regional activity signal.
- The energy of scaling and wavelet coefficients are computed in both frame.
- Finally, the difference is plotted:

Outline

(1) Introduction
(2) Tight Wavelet Frames
(3) Multislice Graphs and Tensors

4 SGWT for Multislice Graphs
(5) Experiments
(6) Conclusion

Conclusion

Conclusion

- An extension of SGWT on multislice graphs is presented.

Conclusion

- An extension of SGWT on multislice graphs is presented.
- This extension allows us to capture the variation across the graphs.

Conclusion

- An extension of SGWT on multislice graphs is presented.
- This extension allows us to capture the variation across the graphs.
- It can be used for different GSP tools.

围 Michael Szell, Renaud Lambiotte, and Stefan Thurner, Multirelational organization of large-scale social networks in an online world, Proceedings of the National Academy of Sciences 107 (2010), no. 31, 13636-13641.
國 Masoud Sattari, Ismail Hakki Toroslu, Pinar Karagoz, Panagiotis Symeonidis, and Yannis Manolopoulos, Extended feature combination model for recommendations in location-based mobile services, Knowledge and Information Systems 44 (2015), no. 3, 629-661.

