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Introduction
A collection of individual graphs with the same vertex set but di�erent edge
set.

graphs with varying interactions over time, i.e. Dynamic Graphs

graphs with multiple type of connectivity, i.e. Multiplex Graphs

Taken from [SLT10]
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Introduction

Graph wavelets are powerful tools to for multi-scale analysis in static graphs.

What about multislice graphs?

Expectation

Multislice graph wavelets, which can be adapted to the varying graph topology,
may give a better suited analysis than the analysis on a single slice.
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A Quick Recap on SGWT

Variable Classical Graph analogy
space variable x nodes
Fourier variable w λi
Fourier basis e−jwx ui

Fourier transform f̂ (w) =
∞∫
−∞

f (x)e−jwxdx f̂ (λi ) =
N∑
j=1

f (j)ui (j)

A scaled �lter ψ̂(sw) g(sλi )

In classical signal processing, the wavelet ψs,a(x) at scale s and location a for
a given "mother wavelet" ψ(x) are:

ψs,a(x) = ψ

(
x − a

s

)
⇐⇒ ψs,a(x) =

1

2π

∫ ∞
−∞

e−jωx ψ̂(sw)e−jωadω
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Then, the graph analogous of ψs,a(x) is:

ψs,a(x) =
1

2π

∫ ∞
−∞

e−jωx ψ̂(sw)e−jωadω → ψs,a(i) =
N∑
j=1

uj(i)g(sλj)uj(a)

In a matrix-vector product:

ψs,a = UTg(sΛ)Uδa

One needs the scaling function h(λi ) to capture the residual low-pass
components:

φa = UTh(Λ)Uδa

If we put them together, we obtain a set of vectors:

F = {φa}na=1 ∪ {ψa,sj}
n,J
a=1,j=1
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Tight Wavelet Frames

F forms a frame of l2(V), if there exists frame bounds A,B > 0 such that

∀v ∈ l2(V), A||f ||2 ≤
∑
f∈F

||〈f, v〉||2 ≤ B||f ||2

Hammond et.al.provide:

A = min
λ∈[0,λN ]

G (λ)

B = max
λ∈[0,λN ]

G (λ)

where G (λ) = h2(λ) +
∑J

j=1 g
2(sjλ).
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Tight Wavelet Frames
A tight frame satis�es A = B = G (λ) for all λ's.

A Parseval frame is a normalized tight frame with G (λ) = A = B = 1 for all
λ's.

Various Parseval wavelet frames have been adapted to graphs:

Meyer Simoncelli

Papadakis Meyer with more scales
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Tensors and Multislice Graphs

A tensor A ∈ RI1×I2×...Id is an algebraic object that can interpret d
dimensional data.

A three dimensional tensor A ∈ RN×N×K can interpret a multislice graph.

Each frontal slice A::k is an adjacency matrix.
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Tensor Operations

Multiplication between a 3D tensor A ∈ RI×J×K and a matrix B ∈ RM×I is
de�ned as:

(A×1 B)jkm =
I∑

i=1

AijkBmi

Matricization or Unfolding A(n) is a reordered concatenation of the slices in
the dimension n:

Figure: Taken from [STK+15]
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Tensor Analysis

Proposition

A tensor A ∈ RN×N×K with A::k = AT
::k for all k = 1, . . . ,K has the the higher

order singular value decomposition (HOSVD) decomposition:

A = S ×1 U×2 U×3 V

with S ∈ RN×N×K and U ∈ RN×N and V ∈ RK×K are orthonormal
matrices i.e. VTV = I, UTU = I.
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Eigennetworks

An eigennetwork tensor S ′ ∈ RN×N×K is de�ned as:

S ′ = S ×1 U×2 U or S ′ = A×3 V
T

Each slice S′::k = US::kU
T , called as eigennetwork, are

I Symmetric i.e. (S′
::k)

T = S′
::k

I Orthogonal in the sense of scalar product i.e. 〈S′
::a, S

′
::b〉 = 0 for i 6= j .

What do they mean?

The �rst eigennetwork S′::1 turns to be the average of all adjacency matrices.

Each eigennetwork captures a component of the variation in the edge weights
across the networks.
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How to compute?

A quick calculation shows:

S ′ = A×3 V
T ⇐⇒ S′::k =

T∑
t=1

VtkA::t

With the unfolding in third dimension A(3) = VΣWT , for K << N ,one can

e�ciently compute V by decomposing A(3)A(3)
T = VΣ2VT .
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SGWT meets with Multislice Graphs

Each eigennetwork captures a component of the variation.

Also, by de�nition, one has

A::k =
K∑
t=1

VktS
′
::t

A new graph can be obtained by combining eigennetworks:

A′ =
K∑
t=1

αtS
′
::t s.t. A′ ≥ 0

Depending on αt 's and S::t , the edge weights associated to relevant variation
components are emphasized in the new network.

From the new graph Laplacian L′ = D′ − A′,one has a new SGWT frame on
it.
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Experiments

Two illustrations for this framework is given:
I Multiplex Grid Graph on Images
I Dynamic Brain Graphs

In the �rst one, we have four underlying 2D grid graphs for an image:

The resultant decomposition gives:

V =


−0.47 0.73 0 0.59
−0.49 −0.69 0 0.54
−0.52 −0.01 0.71 −0.47
−0.52 −0.01 −0.71 −0.49

 with S′::k =
4∑

t=1

VtkA::t (1)
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Experiments
A network set is created from these eigennetworks and a localized �lter
illustrated on them:

Figure: (a)�lter location,(b) A′
1 = −0.5S′

::1, (c)A
′
2 = −0.5S′

::1 + 0.7S′
::2,(d)A

′
3 =

−0.5S′
::1 − 0.7S′

::2,(e)A
′
4 = −0.5S′

::1 + 0.8S′
::3,(f)A

′
5 = −0.5S′

::1 − 0.8S′
::3
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Experiments: Dynamic Brain Graphs
In the experiments, 15 healthy subjects were periodically shown a short movie
excerpt followed by a resting period.

The collected fMRI data is transformed to the regional mean activity and
averaged across subjects.

By a sliding window approach, the correlations of di�erent regions are
computed and used as edge weights.
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Experiments:Dynamic Brain Graph

The eigennetworks S′::k 's and vk 's:
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Experiments: Dynamic Brain Graph

Two adjacency matrices A′1 = −0.1S′1 + 0.2S′::2 and A′2 = −0.1S′1 − 0.3S′::2
are generated:
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Experiments:Dynamic Brain Graph

In the end, two SGWT transforms are obtained.

They are applied to the regional activity signal.

The energy of scaling and wavelet coe�cients are computed in both frame.

Finally, the di�erence is plotted:
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Conclusion

An extension of SGWT on multislice graphs is presented.

This extension allows us to capture the variation across the graphs.

It can be used for di�erent GSP tools.
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