Tight Wavelet Frames on Multislice Graphs

Nora Leonardi, Dimitri Van de Ville

presented by Yusuf Yigit Pilavci

10/06/2020

Leonardi et.al.

10/06/2020 1/26

Outline

- Introduction
- 2 Tight Wavelet Frames
- Multislice Graphs and Tensors
- SGWT for Multislice Graphs
- Experiments
- 6 Conclusion

Leonardi *et.al.*

 A collection of individual graphs with the same vertex set but different edge set.

3/26

- A collection of individual graphs with the same vertex set but different edge set.
- graphs with varying interactions over time, i.e. Dynamic Graphs

1011010000

- A collection of individual graphs with the same vertex set but different edge set.
- graphs with varying interactions over time, i.e. Dynamic Graphs
- graphs with multiple type of connectivity, i.e. Multiplex Graphs

3/26

• Graph wavelets are powerful tools to for multi-scale analysis in static graphs.

4 / 26

- Graph wavelets are powerful tools to for multi-scale analysis in static graphs.
- What about multislice graphs?

4 / 26

- Graph wavelets are powerful tools to for multi-scale analysis in static graphs.
- What about multislice graphs?

Expectation

Multislice graph wavelets, which can be adapted to the varying graph topology, may give a better suited analysis than the analysis on a single slice.

Leonardi et.al. 10/06/2020 4/26

Outline

- Introduction
- 2 Tight Wavelet Frames
- Multislice Graphs and Tensors
- SGWT for Multislice Graphs
- Experiments
- Conclusion

6/26

Variable	Classical	Graph analogy
space variable	X	nodes
Fourier variable	w	λ_i
Fourier basis	e^{-jwx}	u _i
Fourier transform	$\hat{f}(w) = \int_{-\infty}^{\infty} f(x) e^{-jwx} dx$	$\hat{f}(\lambda_i) = \sum_{j=1}^N f(j) u_i(j)$
A scaled filter	$\hat{\psi}(\mathit{sw})$	$g(s\lambda_i)$

6/26

Variable	Classical	Graph analogy
space variable	X	nodes
Fourier variable	w	λ_i
Fourier basis	e^{-jwx}	u _i
Fourier transform	$\hat{f}(w) = \int_{-\infty}^{\infty} f(x) e^{-jwx} dx$	$\hat{f}(\lambda_i) = \sum_{j=1}^N f(j) u_i(j)$
A scaled filter	$\hat{\psi}(sw)$	$g(s\lambda_i)$

• In classical signal processing, the wavelet $\psi_{s,a}(x)$ at scale s and location a for a given "mother wavelet" $\psi(x)$ are:

$$\psi_{s,a}(x) = \psi\left(\frac{x-a}{s}\right)$$

6/26

Variable	Classical	Graph analogy
space variable	X	nodes
Fourier variable	w	λ_i
Fourier basis	e^{-jwx}	u _i
Fourier transform	$\hat{f}(w) = \int_{-\infty}^{\infty} f(x)e^{-jwx}dx$	$\hat{f}(\lambda_i) = \sum_{j=1}^N f(j) \mathbf{u}_i(j)$
A scaled filter	$\hat{\psi}(sw)$	$g(s\lambda_i)$

• In classical signal processing, the wavelet $\psi_{s,a}(x)$ at scale s and location a for a given "mother wavelet" $\psi(x)$ are:

$$\psi_{s,a}(x) = \psi\left(\frac{x-a}{s}\right) \iff \psi_{s,a}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega x} \hat{\psi}(sw) e^{-j\omega a} d\omega$$

Leonardi et.al. 10/06/2020 6/26

$$\psi_{s,a}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega x} \hat{\psi}(sw) e^{-j\omega a} d\omega \rightarrow \psi_{s,a}(i) = \sum_{i=1}^{N} \mathsf{u}_{j}(i) \mathsf{g}(s\lambda_{j}) \mathsf{u}_{j}(a)$$

7/26

$$\psi_{s,a}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega x} \hat{\psi}(sw) e^{-j\omega a} d\omega \rightarrow \psi_{s,a}(i) = \sum_{j=1}^{N} u_{j}(i) g(s\lambda_{j}) u_{j}(a)$$

• In a matrix-vector product:

$$\psi_{s,a} = \mathsf{U}^\mathsf{T} g(\mathsf{s} \mathsf{\Lambda}) \mathsf{U} \delta_a$$

7/26

$$\psi_{s,a}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega x} \hat{\psi}(sw) e^{-j\omega a} d\omega \rightarrow \psi_{s,a}(i) = \sum_{j=1}^{N} u_{j}(i) g(s\lambda_{j}) u_{j}(a)$$

• In a matrix-vector product:

$$\psi_{s,a} = \mathsf{U}^\mathsf{T} g(s \mathsf{\Lambda}) \mathsf{U} \delta_a$$

• One needs the scaling function $h(\lambda_i)$ to capture the residual low-pass components:

$$\phi_a = \mathsf{U}^T h(\Lambda) \mathsf{U} \delta_a$$

Leonardi et.al.

$$\psi_{s,a}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega x} \hat{\psi}(sw) e^{-j\omega a} d\omega \rightarrow \psi_{s,a}(i) = \sum_{j=1}^{N} u_{j}(i) g(s\lambda_{j}) u_{j}(a)$$

• In a matrix-vector product:

$$\psi_{s,a} = \mathsf{U}^\mathsf{T} g(s \mathsf{\Lambda}) \mathsf{U} \delta_a$$

• One needs the scaling function $h(\lambda_i)$ to capture the residual low-pass components:

$$\phi_a = \mathsf{U}^T h(\mathsf{\Lambda}) \mathsf{U} \delta_a$$

• If we put them together, we obtain a set of vectors:

$$F = \{\phi_a\}_{a=1}^n \cup \{\psi_{a,s_j}\}_{a=1,j=1}^{n,J}$$

〈□ 〉 〈□ 〉 〈□ 〉 〈恵 〉 恵 少久 ♡
Leonardi et.al. 10/06/2020 7/26

• F forms a frame of $I_2(\mathcal{V})$, if there exists frame bounds A, B > 0 such that

$$\forall v \in \mathit{I}_{2}(\mathcal{V}), \quad A||f||^{2} \leq \sum_{f \in F} ||\langle f, v \rangle||^{2} \leq B||f||^{2}$$

8/26

• F forms a frame of $l_2(\mathcal{V})$, if there exists frame bounds A, B > 0 such that

$$\forall v \in \mathit{I}_{2}(\mathcal{V}), \quad \mathit{A}||\mathit{f}||^{2} \leq \sum_{f \in \mathit{F}} ||\langle f, v \rangle||^{2} \leq \mathit{B}||\mathit{f}||^{2}$$

Hammond et.al.provide:

$$A = \min_{\lambda \in [0, \lambda_N]} G(\lambda)$$
$$B = \max_{\lambda \in [0, \lambda_N]} G(\lambda)$$

where
$$G(\lambda) = h^2(\lambda) + \sum_{j=1}^J g^2(s_j\lambda)$$
.

イロト 4回ト 4 三ト 4 三 ト 9 9 ()

8/26

• A tight frame satisfies $A = B = G(\lambda)$ for all λ 's.

9/26

- A tight frame satisfies $A = B = G(\lambda)$ for all λ 's.
- A Parseval frame is a normalized tight frame with $G(\lambda) = A = B = 1$ for all λ 's.

<ロ > → □ → → □ → → □ → → へ○

9/26

- A tight frame satisfies $A = B = G(\lambda)$ for all λ 's.
- A Parseval frame is a normalized tight frame with $G(\lambda) = A = B = 1$ for all λ 's.
- Various Parseval wavelet frames have been adapted to graphs:

Leonardi et.al. 10/06/2020

9/26

Outline

- Multislice Graphs and Tensors
- SGWT for Multislice Graphs

Tensors and Multislice Graphs

• A tensor $\mathcal{A} \in \mathbb{R}^{l_1 \times l_2 \times \dots l_d}$ is an algebraic object that can interpret d dimensional data.

11 / 26

Tensors and Multislice Graphs

- A tensor $\mathcal{A} \in \mathbb{R}^{l_1 \times l_2 \times \dots l_d}$ is an algebraic object that can interpret d dimensional data.
- A three dimensional tensor $A \in \mathbb{R}^{N \times N \times K}$ can interpret a multislice graph.

• Each frontal slice A::k is an adjacency matrix.

Tensor Operations

Leonardi *et.al.*

12/26

Tensor Operations

• Multiplication between a 3D tensor $\mathcal{A} \in \mathbb{R}^{I \times J \times K}$ and a matrix $\mathsf{B} \in \mathbb{R}^{M \times I}$ is defined as:

$$(\mathcal{A} \times_{1} \mathsf{B})_{jkm} = \sum_{i=1}^{I} \mathcal{A}_{ijk} \mathsf{B}_{mi}$$

Leonardi et.al. 10/06/2020 12/26

Tensor Operations

• Multiplication between a 3D tensor $\mathcal{A} \in \mathbb{R}^{I \times J \times K}$ and a matrix $\mathsf{B} \in \mathbb{R}^{M \times I}$ is defined as:

$$(\mathcal{A} \times_1 \mathsf{B})_{jkm} = \sum_{i=1}^{I} \mathcal{A}_{ijk} \mathsf{B}_{mi}$$

• Matricization or Unfolding $A_{(n)}$ is a reordered concatenation of the slices in the dimension n:

Figure: Taken from [STK+15]

Tensor Analysis

Proposition

A tensor $A \in \mathbb{R}^{N \times N \times K}$ with $A_{::k} = A_{::k}^T$ for all k = 1, ..., K has the the higher order singular value decomposition (HOSVD) decomposition:

$$A = S \times_1 U \times_2 U \times_3 V$$

with $S \in \mathbb{R}^{N \times N \times K}$ and $U \in \mathbb{R}^{N \times N}$ and $V \in \mathbb{R}^{K \times K}$ are orthonormal matrices i.e. $V^T V = I$, $U^T U = I$.

←□ → ←□ → ← = → ← = → へ ○ ←

• An eigennetwork tensor $S' \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$\mathcal{S}' = \mathcal{S} \times_1 \mathsf{U} \times_2 \mathsf{U} \text{ or } \mathcal{S}' = \mathcal{A} \times_3 \mathsf{V}^T$$

14 / 26

• An eigennetwork tensor $S' \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$\mathcal{S}' = \mathcal{S} \times_1 \mathsf{U} \times_2 \mathsf{U} \text{ or } \mathcal{S}' = \mathcal{A} \times_3 \mathsf{V}^T$$

• Each slice $S'_{::k} = US_{::k}U^T$, called as eigennetwork, are

Leonardi et.al.

14 / 26

• An eigennetwork tensor $S' \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$\mathcal{S}' = \mathcal{S} \times_1 \mathsf{U} \times_2 \mathsf{U} \text{ or } \mathcal{S}' = \mathcal{A} \times_3 \mathsf{V}^T$$

- Each slice $S'_{..k} = US_{::k}U^T$, called as eigennetwork, are
 - Symmetric *i.e.* $(S'_{::k})^T = S'_{::k}$

14 / 26

• An eigennetwork tensor $\mathcal{S}' \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$\mathcal{S}' = \mathcal{S} \times_1 \mathsf{U} \times_2 \mathsf{U} \text{ or } \mathcal{S}' = \mathcal{A} \times_3 \mathsf{V}^T$$

- Each slice $S'_{..k} = US_{::k}U^T$, called as eigennetwork, are
 - Symmetric i.e. $(S'_{::k})^T = S'_{::k}$
 - ▶ Orthogonal in the sense of scalar product *i.e.* $\langle S'_{::a}, S'_{::b} \rangle = 0$ for $i \neq j$.

4 □ ト ← □ ト ← 亘 ト ← 亘 ・ り Q (*)

14 / 26

• An eigennetwork tensor $S' \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$\mathcal{S}' = \mathcal{S} \times_1 \mathsf{U} \times_2 \mathsf{U} \text{ or } \mathcal{S}' = \mathcal{A} \times_3 \mathsf{V}^{\mathsf{T}}$$

- Each slice $S'_{\cdot\cdot k} = US_{::k}U^T$, called as eigennetwork, are
 - Symmetric *i.e.* $(S'_{::k})^T = S'_{::k}$
 - ▶ Orthogonal in the sense of scalar product i.e. $\langle S'_{::a}, S'_{::b} \rangle = 0$ for $i \neq j$.

What do they mean?

4D + 4B + 4B + B + 990

Leonardi et.al.

• An eigennetwork tensor $S' \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$\mathcal{S}' = \mathcal{S} \times_1 \mathsf{U} \times_2 \mathsf{U} \text{ or } \mathcal{S}' = \mathcal{A} \times_3 \mathsf{V}^T$$

- Each slice $S'_{\cdot\cdot k} = US_{::k}U^T$, called as eigennetwork, are
 - Symmetric i.e. $(S'_{::k})^T = S'_{::k}$
 - ▶ Orthogonal in the sense of scalar product *i.e.* $\langle S'_{::a}, S'_{::b} \rangle = 0$ for $i \neq j$.

What do they mean?

 \bullet The first eigennetwork $S_{::1}^{\prime}$ turns to be the average of all adjacency matrices.

10/06/2020

14 / 26

Leonardi et.al.

• An eigennetwork tensor $S' \in \mathbb{R}^{N \times N \times K}$ is defined as:

$$\mathcal{S}' = \mathcal{S} \times_1 \mathsf{U} \times_2 \mathsf{U} \text{ or } \mathcal{S}' = \mathcal{A} \times_3 \mathsf{V}^{\mathsf{T}}$$

- Each slice $S'_{..k} = US_{::k}U^T$, called as eigennetwork, are
 - ▶ Symmetric i.e. $(S'_{\cdot \cdot k})^T = S'_{\cdot \cdot k}$
 - ▶ Orthogonal in the sense of scalar product i.e. $\langle S'_{::a}, S'_{::b} \rangle = 0$ for $i \neq j$.

What do they mean?

- The first eigennetwork S'_{i-1} turns to be the average of all adjacency matrices.
- Each eigennetwork captures a component of the variation in the edge weights across the networks.

Leonardi et.al. 10/06/2020 14 / 26

How to compute?

A quick calculation shows:

$$S' = A \times_3 V^T \iff S'_{::k} = \sum_{t=1}^T V_{tk} A_{::t}$$

Leonardi et.al.

How to compute?

A quick calculation shows:

$$S' = A \times_3 V^T \iff S'_{::k} = \sum_{t=1}^T V_{tk} A_{::t}$$

• With the unfolding in third dimension $A_{(3)} = V \Sigma W^T$, for K << N, one can efficiently compute V by decomposing $A_{(3)} A_{(3)}^T = V \Sigma^2 V^T$.

◆ロト ◆回 ト ◆ 三 ト ◆ 三 ・ 夕 Q ○ ○

Outline

- Introduction
- 2 Tight Wavelet Frames
- Multislice Graphs and Tensors
- SGWT for Multislice Graphs
- Experiments
- Conclusion

Leonardi et.al.

• Each eigennetwork captures a component of the variation.

17/26

Leonardi et.al. 10/06/2020

- Each eigennetwork captures a component of the variation.
- Also, by definition, one has

$$A_{::k} = \sum_{t=1}^{K} V_{kt} S'_{::t}$$

- Each eigennetwork captures a component of the variation.
- Also, by definition, one has

$$A_{::k} = \sum_{t=1}^{K} V_{kt} S'_{::t}$$

A new graph can be obtained by combining eigennetworks:

$$\mathsf{A}' = \sum_{t=1}^K \alpha_t \mathsf{S}'_{::t} \quad \text{ s.t. } \mathsf{A}' \ge 0$$

- Each eigennetwork captures a component of the variation.
- Also, by definition, one has

$$A_{::k} = \sum_{t=1}^{K} V_{kt} S'_{::t}$$

• A new graph can be obtained by combining eigennetworks:

$$\mathsf{A}' = \sum_{t=1}^K \alpha_t \mathsf{S}'_{::t} \quad \text{ s.t. } \mathsf{A}' \ge 0$$

• Depending on α_t 's and $S_{::t}$, the edge weights associated to *relevant* variation components are emphasized in the new network.

4日 → 4団 → 4 重 → 4 重 → 9 9 ○

- Each eigennetwork captures a component of the variation.
- Also, by definition, one has

$$A_{::k} = \sum_{t=1}^{K} V_{kt} S'_{::t}$$

• A new graph can be obtained by combining eigennetworks:

$$\mathsf{A}' = \sum_{t=1}^K \alpha_t \mathsf{S}'_{::t} \quad \text{ s.t. } \mathsf{A}' \ge 0$$

- Depending on α_t 's and $S_{::t}$, the edge weights associated to *relevant* variation components are emphasized in the new network.
- \bullet From the new graph Laplacian $\mathsf{L}'=\mathsf{D}'-\mathsf{A}',$ one has a new SGWT frame on it.

Leonardi et.al. 10/06/2020 17/26

Outline

- Introduction
- 2 Tight Wavelet Frames
- Multislice Graphs and Tensors
- SGWT for Multislice Graphs
- Experiments
- 6 Conclusion

Leonardi et.al.

- Two illustrations for this framework is given:
 - Multiplex Grid Graph on Images
 - Dynamic Brain Graphs

Leonardi et.al. 10/06/2020 19/26

- Two illustrations for this framework is given:
 - Multiplex Grid Graph on Images
 - Dynamic Brain Graphs
- In the first one, we have four underlying 2D grid graphs for an image:

Leonardi et.al.

- Two illustrations for this framework is given:
 - Multiplex Grid Graph on Images
 - Dynamic Brain Graphs
- In the first one, we have four underlying 2D grid graphs for an image:

• The resultant decomposition gives:

$$V = \begin{bmatrix} -0.47 & 0.73 & 0 & 0.59 \\ -0.49 & -0.69 & 0 & 0.54 \\ -0.52 & -0.01 & 0.71 & -0.47 \\ -0.52 & -0.01 & -0.71 & -0.49 \end{bmatrix} \text{ with } S'_{::k} = \sum_{t=1}^{4} V_{tk} A_{::t}$$
 (1)

Leonardi et.al. 10/06/2020 19/26

 A network set is created from these eigennetworks and a localized filter illustrated on them:

Figure: (a)filter location, (b) $A_1' = -0.5S_{::1}'$, $(c)A_2' = -0.5S_{::1}' + 0.7S_{::2}'$, $(d)A_3' = -0.5S_{::1}' - 0.7S_{::2}'$, $(e)A_4' = -0.5S_{::1}' + 0.8S_{::3}'$, $(f)A_5' = -0.5S_{::1}' - 0.8S_{::3}'$

Leonardi et.al. 10/06/2020 20 / 26

◆□ ト ◆圖 ト ◆ 園 ト ◆ 園 ト

• In the experiments, 15 healthy subjects were periodically shown a short movie excerpt followed by a *resting* period.

- In the experiments, 15 healthy subjects were periodically shown a short movie excerpt followed by a *resting* period.
- The collected fMRI data is transformed to the regional mean activity and averaged across subjects.

- In the experiments, 15 healthy subjects were periodically shown a short movie excerpt followed by a *resting* period.
- The collected fMRI data is transformed to the regional mean activity and averaged across subjects.

 By a sliding window approach, the correlations of different regions are computed and used as edge weights.

Leonardi *et.al.* 10/06/2020

• The eigennetworks S'_{k} 's and V_{k} 's:

22 / 26

Leonardi et.al. 10/06/2020

 \bullet Two adjacency matrices $A_1'=-0.1S_1'+0.2S_{::2}'$ and $A_2'=-0.1S_1'-0.3S_{::2}'$ are generated:

• In the end, two SGWT transforms are obtained.

Leonardi et.al.

- In the end, two SGWT transforms are obtained.
- They are applied to the regional activity signal.

- In the end, two SGWT transforms are obtained.
- They are applied to the regional activity signal.
- The energy of scaling and wavelet coefficients are computed in both frame.

24 / 26

Leonardi et.al. 10/06/2020

- In the end, two SGWT transforms are obtained.
- They are applied to the regional activity signal.
- The energy of scaling and wavelet coefficients are computed in both frame.
- Finally, the difference is plotted:

Outline

- Introduction
- Tight Wavelet Frames
- Multislice Graphs and Tensors
- SGWT for Multislice Graphs
- Experiments
- **6** Conclusion

Leonardi et.al.

• An extension of SGWT on multislice graphs is presented.

26 / 26

Leonardi et.al. 10/06/2020

- An extension of SGWT on multislice graphs is presented.
- This extension allows us to capture the variation across the graphs.

Leonardi et.al. 10/06/2020 26 / 26

- An extension of SGWT on multislice graphs is presented.
- This extension allows us to capture the variation across the graphs.
- It can be used for different GSP tools.

Leonardi et.al. 10/06/2020 26 / 26

- Michael Szell, Renaud Lambiotte, and Stefan Thurner, *Multirelational* organization of large-scale social networks in an online world, Proceedings of the National Academy of Sciences **107** (2010), no. 31, 13636–13641.
 - Masoud Sattari, Ismail Hakki Toroslu, Pinar Karagoz, Panagiotis Symeonidis, and Yannis Manolopoulos, *Extended feature combination model for recommendations in location-based mobile services*, Knowledge and Information Systems **44** (2015), no. 3, 629–661.