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Introduction

I What
I Why
I How



What: community mining

e.g. The PhD students in the same city

I Many real networks have a modular structure

I Items belonging to the same module (community) have
common properties

I The representation of a system through a weighted similarity
graph is very general
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Why: multiscale community mining

I The concept of community is intrinsically connected to its own
scale.

I Most of the existing algorithms (at least back in 2014) impose
the scale of the communities and do not allow to choose it.

Need of a multiscale approach to community mining
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I Centered at a node and spreads over the graph at a given scale

I How the the nodes sees the graph at that scale
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I Spectral clustering
I Graph Fourier transform



Spectral clustering

I Weighted graph G(V, E ,A). |V| = n, A ∈ Rn×n

I Diagonal degree matrix: Dii = di =
∑

j Aij

Graph Laplacian matrix

L = D − A

Properties

I 0 = λ1 ≤ λ2 ≤ · · · ≤ λn
I L1n = 0
I ∀ x ∈ Rn, xTLx = 1

2
∑

i ,j Aij(xi − xj)
2

I λ2 Fiedler eigenvalue: community reconstruction
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Spectral clustering

I Weighted graph G(V, E ,A).
I Diagonal degree matrix: Dii = di =

∑
j Aij

Normalized Laplacian matrix

Lsym = In − D−1/2AD−1/2

Properties

I 0 = λ1 ≤ λ2 ≤ · · · ≤ λn

I ∀ x ∈ Rn, xTLsymx = 1
2
∑

i ,j Aij

(
xi√
di
− xj√

dj

)2

I λ2 community reconstruction



Fourier transform (recall)

The eigenvectors {uk} of a matrix R are considered to be graph
Fourier modes and the respective eigenvalues λktheir associated
graph frequency if

I Consistency: R is circulant on the ring graph
I Variational interpretation: λk is measures the variation of uk

Both L and Lsym are a suitable choice for R .
Graph Fourier transform

U = (u1|u2| . . . |un) ∈ Rn×n =⇒ f̂ = UT f
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I Graph wavelet filter
I Adapt the filter to community mining



Graph wavelet filter

We want to create the wavelet ψs,a of scale s around node a.

Consider the band-pass kernel filter

Gs = diag(g(sλ1), g(sλ2), . . . , g(sλn))

We thus obtain the wavelet basis

Ψs = UGsU
T

that applied on the Dirac gives the node wavelet

ψs,a = UGsU
Tδa

thus the wavelet coefficient of node a at scale s

Wf (s, a) = ψT
s,af
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Graph wavelet filter

What are we doing?

Ψf (s, a) = UGsU
Tδa

I Take the Dirac
I Go to Fourier space
I Apply the filter and select the scale s

I Make an inverse Fourier transform

Wf (s, a) = ψ
T
s,af

Project the signal on the wavelet
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Adapt the filter to community mining

g(x ;α, β, x1, x2) =


(

x
x1

)α
for x ≤ x1

p(x) x1 ≤ x ≤ x2(
x2
x

)β for x ≥ x2



Adapt the filter to community mining

I Choose smax = x2/λ2: g(smaxx) decays after λ2.

I β = 1/log10(λ3/λ2) : attenuate the modes beyond λ2,
g(smaxλ2) = 10g(smaxλ3).

I smin = x1/λ2: g(sλ2) > 1 for smin ≤ s ≤ smax
I α = 2 : it only determines the selectivity of the filter

Fixing x1 = 1, we finally obtain

smin =
1
λ2
, x2 =

1
λ2
, smax =

1
λ2

2
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I Identifying the communities
I Fast community mining
I What are the most relevant scales?
I How relevant are the most relevant scales?



Identifying the communities
I We create a vector s between smin and smax with M ∼ log(n)

elements, logarithmically spaced.

I For each s and each node, create the wavelet ψs,a.
I Create the correlation distance matrix

Ds(a, b) = 1− ψT
s,aψs,b

‖ψs,a‖2‖ψs,b‖2
I Use a hierarchical average linkage algorithm on Ds

We obtain a dendogram
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Identifying the communities

For each node a create the function Γa (why is decreasing after one?
How is it defined?)

Average Γa over all a and obtain Γ. Cut at the maximum of Γ. Repeat
for all s and obtain {Ps}.



Fast community mining
As things stand now

I Compute all the ψs,a = UGsU
Tδa ∈ Rn

I From this compute the matrix Ds

... not so fast. Consider the following procedure:
I R = (r1|r2| . . . |rη) ∈ Rn×η vectors of zero mean, unit variance

i.i.d. Gaussian r.v.
I Compute f T

s,a = ψT
s,aR ∈ Rη

I Define Ĉab,η = corr(fs,a, fs,b)

I For η sufficiently large Ĉab,η → 1− Ds(a, b)

I With Chebishev polynomial approximation, fs,a can be
computed efficiently.

UGsU
T r = U

(
p∑

k=1

αkΛk
k

)
UT r =

p∑
k=1

αkL
kr
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I Define Ĉab,η = corr(fs,a, fs,b)

I For η sufficiently large Ĉab,η → 1− Ds(a, b)
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What are the most relevant scales?

Consider J(= 20) sets of η random signals. Obtain the set of
partitions {P j

s}j=1,...,J .

γ(s) =
2

J(J − 1)

∑
i 6=j

ari(P i
s ,P

j
s)

The closer γ(s) is to one, the more stable is the partition.



How relevant are the most relevant scales?

I Generate a series of null graphs with the same degree
distribution

I For each, compute γ0(s) and obtain the empirical distribution
I Reject the configurations with γ(s) to close to γ0(s)
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An example
A Graph of Social Interactions Between Children in a Primary
School
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